Skip to main content
Log in

Existence of the generalized Fučík spectrum for nonhomogeneous elliptic operators

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

By variational methods and Morse theory, we prove the existence of uncountably many \((\alpha ,\beta )\in \mathbb R ^2\) for which the equation \(-\mathrm{div}\, A(x, \nabla u)=\alpha u_+^{p-1} -\beta u_-^{p-1}\) in \(\Omega \), has a sign changing solution under the Neumann boundary condition, where a map \(A\) from \(\overline{\Omega }\times \mathbb R ^N\) to \(\mathbb R ^N\) satisfying certain regularity conditions. As a special case, the above equation contains the \(p\)-Laplace equation. However, the operator \(A\) is not supposed to be \((p-1)\)-homogeneous in the second variable. In particular, it is shown that generally the Fučík spectrum of the operator \(-\mathrm{div}\, A(x, \nabla u)\) on \(W^{1,p}(\Omega )\) contains some open unbounded subset of \(\mathbb R ^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: An asymmetric Neumann problem with weights. Ann. Inst. Henri Poincaré 25, 267–280 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arias, M., Campos, J., Gossez, J.-P.: On the antimaximum principle and the Fučik spectrum for the Neumann \(p\)-Laplacian. Differ. Int. Equ. 13, 217–226 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Casas, E., Fernandez, L.A.: A Green’s formula for quasilinear elliptic operators. J. Math. Anal. Appl. 142, 62–73 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, K.C.: Infinite-Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  5. Cuesta, M., de Figueiredo, D., Gossez, J.-P.: The beginning of the Fučík spectrum for the \(p\)-Laplacian. J. Differ. Equ. 159, 212–238 (1999)

    Article  MATH  Google Scholar 

  6. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. Henri Poincaré 15, 493–516 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dancer, E.: On the Dirichlet problem for weak nonlinear elliptic partial differential equations. Proc. R. Soc. Edinburgh 76A, 283–300 (1977)

    MathSciNet  Google Scholar 

  8. Dancer, N., Perera, K.: Some remarks on the Fučík spectrum of the \(p\)-Laplacian and critical groups. J. Math. Anal. Appl. 254, 164–177 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  10. Dold, A.: Lectures on Algebraic Topology. Springer, Berlin (1995)

    MATH  Google Scholar 

  11. Fucik, S.: Boundary value problems with jumping nonlinearities. Casopis Pest. Mat. 101, 69–87 (1976)

    MATH  MathSciNet  Google Scholar 

  12. Kim, Y.-H.: A global bifurcation for nonlinear equations with nonhomogeneous part. Nonlinear Anal. 71, 738–743 (2009)

    Article  MathSciNet  Google Scholar 

  13. Kim, I.-S., Kim, Y.-H.: Global bifurcation for equations involving nonhomogeneous operators in an unbounded domain. Nonlinear Anal. 73, 1057–1064 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal. 12, 1203–1219 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian System. Springer, New York (1989)

    Book  Google Scholar 

  16. Miyajima, S., Motreanu, D., Tanaka, M.: Multiple existence results of solutions for the Neumann problems via super- and sub-solutions. J. Funct. Anal. 262, 1921–1953 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Multiple constant sign and nodal solutions for Nonlinear Neumann eigenvalue problems. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 10, 729–755 (2011)

    Google Scholar 

  18. Motreanu, D., Papageorgiou, N.S.: Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator. Proc. Am. Math. Soc. 139, 3527–3535 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Motreanu, D., Tanaka, M.: Existence of solutions for quasilinear elliptic equations with jumping nonlinearities under the Neumann boundary condition. Calc. Var. Partial Differ. Equ. 43, 231–264 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Motreanu, D., Tanaka, M.: Generalized eigenvalue problems of nonhomogeneous elliptic operators and their application. Pacifc J. Math. (2013, to appear)

  21. Robinson, S.B.: On the second eigenvalue for nonhomogeneous quasi-linear operators. SIAM J. Math. Anal. 35, 1241–1249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Spanier, E.H.: Algebraic Topology. Springer, New York (1966)

    MATH  Google Scholar 

  23. Tanaka, M.: Existence of the Fučik type spectrums for the generalized \(p\)-Laplace operators. Nonlinear Anal. 75, 3407–3435 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tanaka, M.: The antimaximum principle and the existence of a solution for the generalized \(p\)-Laplace equations with indefinite weight. Differ. Equ. Appl. 4, 581–613 (2012)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieko Tanaka.

Additional information

Communicated by P. Rabinowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, M. Existence of the generalized Fučík spectrum for nonhomogeneous elliptic operators. Calc. Var. 51, 87–115 (2014). https://doi.org/10.1007/s00526-013-0667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0667-8

Mathematics Subject Classification (2000)

Navigation