Skip to main content
Log in

Regularity of the Monge–Ampère equation in Besov’s spaces

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let \(\mu = e^{-V} \ dx\) be a probability measure and \(T = \nabla \Phi \) be the optimal transportation mapping pushing forward \(\mu \) onto a log-concave compactly supported measure \(\nu = e^{-W} \ dx\). In this paper, we introduce a new approach to the regularity problem for the corresponding Monge–Ampère equation \(e^{-V} = \det D^2 \Phi \cdot e^{-W(\nabla \Phi )}\) in the Besov spaces \(W^{\gamma ,1}_{loc}\). We prove that \(D^2 \Phi \in W^{\gamma ,1}_{loc}\) provided \(e^{-V}\) belongs to a proper Besov class and \(W\) is convex. In particular, \(D^2 \Phi \in L^p_{loc}\) for some \(p>1\). Our proof does not rely on the previously known regularity results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures. Birkhäuser, Brazil (2008)

  3. Bakelman, I.J.: Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  4. Bogachev, V.I., Kolesnikov, A.V.: Sobolev regularity for the Monge–Ampere equation in the Wiener space. arXiv: 1110.1822 (to appear in Kyoto J. Math.).

  5. Bogachev, V.I., Kolesnikov, A.V.: The Monge–Kantorovich problem: achievements, connections, and perspectives. Russ. Math. Surv. 67(5), 785–890 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borell, C.: Convex measures on locally convex spaces. Ark. Math. 12(2), 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorem for \(W^{s, p}\) when \(s \uparrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caffarelli, L.: Interior \(W^{2, p}\) estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 35–150 (1990)

    Article  Google Scholar 

  9. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society, Providence (1995)

    MATH  Google Scholar 

  10. DePhilippis, G., Figalli, A.: \(W^{1,2}\) regularity for solutions of the Monge–Ampère equation. arXiv:1111.7207. 0000

  11. DePhilippis, G., Figalli, A., Savin, O.: A note on the interior \(W^{2,1+\varepsilon }\) estimates for the Monge–Ampère equation. arXiv:1202.5566. 0000

  12. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equation of the Second Order. Springer, Berlin (2001)

    Google Scholar 

  13. Gutiérrez, C.E.: The Monge–Ampère equation, Progress in Nonlinear Differential Equations and Their Applications, vol. 44. Birkhäuser, Brazil (2001)

  14. Huang, Q.B.: On the mean oscillation of the Hessian of solutions to the Monge–Ampère equation. Adv. Math. 207, 599–616 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kolesnikov, A.V.: On Sobolev regularity of mass transport and transportation inequalities, Theory of Probability and its Applications, to appear. Translated from Teor. Veroyatnost. i Primenen. 57(2), 296–321 (2012). Available online at arXiv:1007.1103

  16. Kolesnikov, A.V.: Hessian structures and optimal transportation of log-concave measures. arXiv:1201. 2342. 0000

  17. Kolyada, V.I., Lerner, A.K.: On limiting embeddings of Besov spaces. Stud. Math. 171(1), 1–13 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Krylov, N.V.: Fully nonlinear second order elliptic equations: recent developments. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXV(4), 569–595 (1997)

    Google Scholar 

  19. McCann, R.J.: A convexity principle for interacting gases. Adv. Math. 128(1), 153–179 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mazya, V., Shaposhnikova, T.: On the Bourgain, Brezis and Mironescu theorem concerning limitiong embeddings of fractional Sobolev spaces. J. Func. Anal. 195, 230–238 (2002)

    Article  MathSciNet  Google Scholar 

  21. Pogorelov, A.V.: Monge–Ampère equations of elliptic type, Noordhoff (1964)

  22. Savin, O.: Global \(W^{2, p}\) estimates for the Monge–Ampère equation. arXiv: 1103.0456. 0000

  23. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University, Princeton (1973)

  24. Schmidt, T.: \(W^{2,1+\varepsilon }\) estimates for the Monge–Ampère equation. http://cvgmt.sns.it/paper/1779

  25. Trudinger, N.S., Wang, X.-J.: The Monge–Ampère equation and its geometric applications, Handbook of geometric analysis. Adv. Lect. Math. (ALM). 7(1), 467–524 (2008)

  26. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  27. Villani, C.: Optimal Transport, Old and New, Vol. 338 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2009)

  28. Wang, X.-J.: Some counterexamples to the regularity of Monge–Ampère equations. Proc. Amer. Math. Soc. 123(3), 841–845 (1995)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yu. Tikhonov.

Additional information

This study was carried out within “The National Research University Higher School of Economics” Academic Fund Program in 2012-2013, research Grant No. 11-01-0175. The first author was supported by RFBR projects 10-01-00518, 11-01-90421-Ukr-f-a, and the program SFB 701 at the University of Bielefeld. The second author was partially supported by MTM 2011-27637, 2009 SGR 1303, RFFI 12-01-00169, and NSH-979.2012.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolesnikov, A.V., Tikhonov, S.Y. Regularity of the Monge–Ampère equation in Besov’s spaces. Calc. Var. 49, 1187–1197 (2014). https://doi.org/10.1007/s00526-013-0617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-013-0617-5

Mathematics Subject Classification (2000)

Navigation