Skip to main content
Log in

On functions whose symmetric part of gradient agree and a generalization of Reshetnyak’s compactness theorem

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following question: Given a connected open domain \({\Omega \subset \mathbb{R}^n}\), suppose \({u, v : \Omega \rightarrow \mathbb{R}^n}\) with det\({(\nabla u) > 0}\), det\({(\nabla v) > 0}\) a.e. are such that \({\nabla u^T(x)\nabla u(x) = \nabla v(x)^T \nabla v(x)}\) a.e. , does this imply a global relation of the form \({\nabla v(x) = R\nabla u(x)}\) a.e. in Ω where \({R \in SO(n)}\) ? If u, v are C 1 it is an exercise to see this true, if \({u, v\in W^{1,1}}\) we show this is false. In Theorem 1 we prove this question has a positive answer if \({v \in W^{1,1}}\) and \({u \in W^{1,n}}\) is a mapping of L p integrable dilatation for p > n − 1. These conditions are sharp in two dimensions and this result represents a generalization of the corollary to Liouville’s theorem that states that the differential inclusion \({\nabla u \in SO(n)}\) can only be satisfied by an affine mapping. Liouville’s corollary for rotations has been generalized by Reshetnyak who proved convergence of gradients to a fixed rotation for any weakly converging sequence \({v_k \in W^{1,1}}\) for which

$$\int \limits_{\Omega} {\rm dist}(\nabla v_k, SO(n))dz \rightarrow 0 \, {\rm as} \, k \rightarrow \infty.$$

Let S(·) denote the (multiplicative) symmetric part of a matrix. In Theorem 3 we prove an analogous result to Theorem 1 for any pair of weakly converging sequences \({v_k \in W^{1,p}}\) and \({u_k \in W^{1,\frac{p(n-1)}{p-1}}}\) (where \({p \in [1, n]}\) and the sequence (u k ) has its dilatation pointwise bounded above by an L r integrable function, rn − 1) that satisfy \({\int_{\Omega} |S(\nabla u_k) - S(\nabla v_k)|^p dz \rightarrow 0}\) as k → ∞ and for which the sign of the det\({(\nabla v_k)}\) tends to 1 in L 1. This result contains Reshetnyak’s theorem as the special case (u k ) ≡ Id, p = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: An pproximation lemma for W 1,p functions. In: Material Instabilities in Continuum Mechanics (Edinburgh, 1985–1986). Oxford Univrsity Press, New York (1988)

  2. Ambrosio L., Dal Maso G.: A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108(3), 691–702 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. Oxford University Press, New York (2000)

  4. Astala K., Iwaniec T., Martin G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976/7197)

    Google Scholar 

  6. Ball J.M., James R.D.: Fine phase mixtures as minimisers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ball J.M., James R.D.: Proposed experimental tests of a theory of fine microstructure and the two well problem. Phil. Tans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  MATH  Google Scholar 

  8. Bojarski B., Iwaniec T.: Another approach to Liouville theorem. Math. Nachr. 107, 253–262 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle A., Giacomini A., Ponsiglione M.: Piecewise rigidity. J. Funct. Anal. 244(1), 134–153 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chaudhuri N., Müller S.: Rigidity estimate for two incompatible wells. Calc. Var. 19(4), 379–390 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chermisi M., Conti S.: Multiwell rigidity in nonlinear elasticity. SIAM J. Math. Anal. 42(5), 1986–2012 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chernavskii A.V.: Discrete and open mappings on manifolds. Mat. Sb. 65, 357–369 (1964) (Russian)

    MathSciNet  Google Scholar 

  13. Chernavskii A.V.: Continuation to Discrete and open mappings on manifolds. Mat. Sb. 66, 471–472 (1965) (Russian)

    MathSciNet  Google Scholar 

  14. Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Ration. Mech. Anal. 103(3), 237–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Conti S., Schweizer B.: Rigidity and Gamma convergence for solid-solid phase transitions with SO(2)-invariance. Commun. Pure Appl. Math. 59(6), 830–868 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Csornyei M., Hencl S., Maly J.: Homeomorphisms in the Sobolev space W 1,n-1. J. Reine Angew. Math. 644, 221–235 (2010)

    MathSciNet  Google Scholar 

  17. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

  18. Evan, L.C.: Partial differential equations, 2nd edn. Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010)

  19. Faraco D., Zhong X.: Geometric rigidity of conformal matrices. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(4), 557–585 (2005)

    MathSciNet  Google Scholar 

  20. Federer H.: Geometric Measure Theory. Springer, New York (1969)

    MATH  Google Scholar 

  21. Fréchet M.: Les dimensions d’un ensemble abstrait. Math. Ann. 68, 145–168 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  22. Friesecke G., James R.D., Müller S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55(11), 1461–1506 (2002)

    Article  MATH  Google Scholar 

  23. Gehring F.W.: Rings and quasiconformal mappings in space. Trans. Am. Math. Soc. 103, 353–393 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gehring F.W., Iwaniec T.: The limit of mappings with finite distortion. Ann. Acad. Sci. Fenn. Math. 24(1), 253–264 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Gutlyanskii Y.V., Martio O., Ryazanov V.I., Vuorinen M.: Infinitesimal geometry of quasiregular mappings. Ann. Acad. Sci. Fenn. Math. 25(1), 101–130 (2000)

    MathSciNet  Google Scholar 

  26. Heinonen J., Koskela P.: Sobolev mappings with integrable dilatations. Arch. Ration. Mech. Anal. 125(1), 81–97 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hencl S., Koskela P., Mal J.: Regularity of the inverse of a Sobolev homeomorphism in space. Proc. R. Soc. Edinb. A 136(6), 1267–1285 (2006)

    Article  MATH  Google Scholar 

  28. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1941)

  29. Iwaniec T., Martin G.: Quasiregular mappings in even dimensions. Acta Math. 170(1), 29–81 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Iwaniec T., Sverak V.: On mappings with integrable dilatation. Proc. Am. Math. Soc. 118(1), 181–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jerrard, R.L., Lorent, A.: On multiwell Liouville Theorems in Higher Dimension. http://arxiv.org/abs/0802.0850

  32. John F.: Rotation and strain. Commun. Pure Appl. Math. 14, 391–413 (1961)

    Article  MATH  Google Scholar 

  33. Kohn R.V.: New integral estimates for deformations in terms of their nonlinear strains. Arch. Ration. Mech. Anal. 78(2), 131–172 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liouville J.: Théoréme sur l’équation dx 2 + dy 2 + dz 2 = λ ( 2 + 2 + 2). J. Math. Pure Appl. 1(15), 103 (1850)

    Google Scholar 

  35. Lorent A.: A two well liouville theorem. ESAIM Control Optim. Calc. Var. 11(3), 310–356 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lorent, A.: On functions who symmetric part of gradient are close. Preprint.

  37. Manfredi J.: Weakly monotone functions. J. Geom. Anal. 4(3), 393–402 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Manfredi J., Villamor E.: An extension of Reshetnyak’s theorem. Indiana Univ. Math. J. 47(3), 1131–1145 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Martio O., Rickman S., Vaisala J.: Topological and metric properties of quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 488, 1–31 (1971)

    Google Scholar 

  40. Mattila, P.: Geometry of sets and measures in euclidean spaces. In: Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

  41. Morrey C.B.: Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2(25), 1–7 (1952)

    MathSciNet  Google Scholar 

  42. Müller S.: Higher integrability of determinants and weak convergence in L1. J. Reine Angew. Math. 412(20), 1–7 (1990)

    MathSciNet  Google Scholar 

  43. Muller S., Sverak V., Yan B.: Sharp stability results for almost conformal maps in even dimensions. J. Geom. Anal. 9(4), 671–681 (1999)

    Article  MathSciNet  Google Scholar 

  44. Muller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Lecture Notes in Mathematics, vol. 1713, pp. 85–210. Springer, Berlin (1999)

  45. Reshetnyak, Yu. G.: Liouville’s conformal mapping theorem under minimal regularity hypotheses. Sibirsk. Mat. Ž. 8, 835–840 (1967) (Russian)

    Google Scholar 

  46. Reshetnyak, Yu. G.: Stability theorems in geometry and analysis. In: Mathematics and its Applications, vol. 304. Kluwer, Dordrecht (1994)

  47. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear Analysis and Mechanics: Heriot-Watt Symposium. Research Notes in Mathematics Series 39, vol. IV, pp. 136–212. Pitman, Boston (1979)

  48. Vaisala, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Mathematics, vol. 229. Springer, New York (1971)

  49. Vaisala J.: Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. Math. 392, 1–10 (1966)

    MathSciNet  Google Scholar 

  50. Zhang K.: A construction of quasiconvex functions with linear growth at infinity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 19(3), 313–326 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lorent.

Additional information

Communicated by L.Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorent, A. On functions whose symmetric part of gradient agree and a generalization of Reshetnyak’s compactness theorem. Calc. Var. 48, 625–665 (2013). https://doi.org/10.1007/s00526-012-0566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0566-4

Mathematics Subject Classification (2000)

Navigation