Skip to main content
Log in

Global existence for the Cauchy problem of the parabolic–parabolic Keller–Segel system on the plane

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

This paper is concerned with the Cauchy problem for the Keller–Segel system

$$\left\{\begin{array}{l@{\quad}l}u_t = \nabla \cdot (\nabla u - u \nabla v) & \hbox{in } {\bf R}^{2} \times(0,\infty),\\v_t = \Delta v - \lambda v + u & \hbox{ in } {\bf R}^2 \times(0,\infty),\\u(x,0) = u_0 (x) \geq 0, \; v(x,0) = v_0 (x) \geq 0 & \hbox{ in} {\bf R}^2\end{array}\right.$$

with a constant λ ≥ 0, where \({(u_0, v_0) \in (L^1 ({\bf R}^2) \cap L^\infty ({\bf R}^2) ) \times (L^1 ({\bf R}^2) \cap H^1 ({\bf R}^2))}\). Let

$$m (u_0;{\bf R}^2) = \int\limits_{{\bf R}^2} u_0 (x) dx$$

. The same method as in [9] yields the existence of a blowup solution with m (u 0; R 2) > 8π. On the other hand, it was recently shown in [7] that under additional hypotheses \({u_0 \log (1 + |x|^2) \in L^1 ({\bf R}^2)}\) and \({u_0 \log u_0 \in L^1 ({\bf R}^2)}\), any solution with m(u 0; R 2) < 8π exists globally in time. In[18], the extra assumptions were taken off, but the condition on mass was restricted to m (u 0; R 2) < 4π. In this paper, we prove that any solution with m (u 0; R 2) < 8π exists globally in time under no extra conditions. Furthermore the global existence of solutions is obtained under some condition on u 0 also in the critical case m (u 0; R 2) = 8π.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biler P.: Local and global solvability of some parabolic systems modeling chemotaxis. Adv. Math. Sci. Appl. 8, 715–743 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Biler P., Nadzieja T.: Existence and nonexistence of solutions for a model of gravitational interactions of particles. Colloquium Math. 66, 319–334 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Biler P., Karch G., Laurençot P., Nadzieja T.: The 8π problem for radially symmetric solutions of a chemotaxis model in a disk. Nonlinear Anal. 27, 133–147 (2006)

    MATH  Google Scholar 

  4. Biler P., Karch G., Laurençot P., Nadzieja T.: The 8π problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563–1583 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blanchet A., Carrillo J.A., Masmoudi N.: Infinite time aggregation for the critical Patlak-Keller–Segel model in R 2. Commun. Pure Appl. Math. 61, 1449–1481 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Biler P., Corrias L., Dolbeault J.: Large mass self-similar solutions of the parabolic–parabolic Keller–Segel model of chemotaxis. J. Math. Biol. 63, 1–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvez V., Corrias L.: The parabolic–parabolic Keller–Segel model in R 2. Commun. Math. Sci. 6, 417–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gajewski H., Zacharias K.: Global behavior of a reaction-diffusion system modeling chemotaxis. Math. Nachr. 195, 77–114 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Herrero M.A., Velázquez J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scoula Norm. Sup. Pisa IV 35, 633–683 (1997)

    Google Scholar 

  10. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. Deutsch. Math. -Verein. 105, 103–165 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Jäger W., Luckhaus S.: On explosions of solutions to a system of partial differential equations modeling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)

    MATH  Google Scholar 

  12. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  13. Mizoguchi, N., Velázquez, J.J.L.: Forward self-similar solution to the Keller–Segel system with mass greater than 8π (in preparation)

  14. Moser J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1971)

    Article  Google Scholar 

  15. Nagai T.: Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5, 581–601 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Nagai T.: Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two dimensional domains. J. Inequal. Appl. 6, 37–55 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Nagai T.: Global existence and decay estimates of solutions to a parabolic–elliptic system of drift-diffusion type in R 2. Differ. Integral Equ. 24, 29–68 (2010)

    MathSciNet  Google Scholar 

  18. Nagai T., Ogawa T.: Brezis–Merle inequalities and application to the global existence of the Cauchy problem of the Keller–Segel system. Commun. Contemp. Math. 13, 795–812 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagai T., Senba T., Yoshida K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkc. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Nagai T., Senba T., Suzuki T.: Chemotactic collapse in parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Ohtsuka H., Senba T., Suzuki T.: Blowup in infinite time in the simplified system of chemotaxis. Adv. Math. Sci. Appl. 17, 445–472 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Trudinger N.S.: On imbedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–484 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Mizoguchi.

Additional information

Communicated by Y.Giga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mizoguchi, N. Global existence for the Cauchy problem of the parabolic–parabolic Keller–Segel system on the plane. Calc. Var. 48, 491–505 (2013). https://doi.org/10.1007/s00526-012-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0558-4

Mathematics Subject Classification (2010)

Navigation