Abstract
In this paper, we show that the near field reflector problem is a nonlinear optimization problem. From the corresponding functional and constraint function, we derive the Monge–Ampère type equation for such a problem.
Similar content being viewed by others
References
Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)
Gangbo W., McCann R.J.: Optimal maps in Monge’s transport problem. C. R. Acad. Sci. Paris Sér. I Math. 321, 1653–1658 (1995)
Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1983)
Guan P., Wang X.-J.: On a Monge–Ampère equation arising in geometric optics. J. Diff. Geom. 48, 205–222 (1998)
Gutiérrez, C.E., Huang, Q.: The near field refractor (preprint)
Karakhanyan A., Wang X.-J.: On the reflector shape design. J. Diff. Geom. 84, 561–610 (2010)
Kochengin S., Oliker V.: Determination of reflector surfaces from near-field scattering data. Inverse Probl. 13, 363–373 (1997)
Liu, J.: On a class of nonlinear optimization problems (in preparation)
Ma X.N., Trudinger N.S., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 151–183 (2005)
Schneider R.: Convex bodies. The Brunn–Minkowski theory. Cambridge University Press, Cambridge (1993)
Urbas, J.: Mass transfer problems, Lecture notes, Univ. of Bonn (1998)
Villani C.: Optimal transport Old New Grundlehren Math Wiss vol 338. Springer-Verlag, Berlin (2009)
Wang X.-J.: On the design of a reflector antenna. Inverse Probl. 12, 351–375 (1996)
Wang X.-J.: On the design of a reflector antenna II. Calc. Var. PDEs 20, 329–341 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by A. Chang.