Skip to main content
Log in

Light reflection is nonlinear optimization

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we show that the near field reflector problem is a nonlinear optimization problem. From the corresponding functional and constraint function, we derive the Monge–Ampère type equation for such a problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44, 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gangbo W., McCann R.J.: Optimal maps in Monge’s transport problem. C. R. Acad. Sci. Paris Sér. I Math. 321, 1653–1658 (1995)

    MathSciNet  MATH  Google Scholar 

  3. Gilbarg D., Trudinger N.: Elliptic partial differential equations of second order. Springer-Verlag, Berlin (1983)

    Book  MATH  Google Scholar 

  4. Guan P., Wang X.-J.: On a Monge–Ampère equation arising in geometric optics. J. Diff. Geom. 48, 205–222 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Gutiérrez, C.E., Huang, Q.: The near field refractor (preprint)

  6. Karakhanyan A., Wang X.-J.: On the reflector shape design. J. Diff. Geom. 84, 561–610 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Kochengin S., Oliker V.: Determination of reflector surfaces from near-field scattering data. Inverse Probl. 13, 363–373 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, J.: On a class of nonlinear optimization problems (in preparation)

  9. Ma X.N., Trudinger N.S., Wang X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177, 151–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Schneider R.: Convex bodies. The Brunn–Minkowski theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  11. Urbas, J.: Mass transfer problems, Lecture notes, Univ. of Bonn (1998)

  12. Villani C.: Optimal transport Old New Grundlehren Math Wiss vol 338. Springer-Verlag, Berlin (2009)

    Google Scholar 

  13. Wang X.-J.: On the design of a reflector antenna. Inverse Probl. 12, 351–375 (1996)

    Article  MATH  Google Scholar 

  14. Wang X.-J.: On the design of a reflector antenna II. Calc. Var. PDEs 20, 329–341 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiakun Liu.

Additional information

Communicated by A. Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J. Light reflection is nonlinear optimization. Calc. Var. 46, 861–878 (2013). https://doi.org/10.1007/s00526-012-0506-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0506-3

Mathematics Subject Classification (2000)

Navigation