Skip to main content
Log in

On the long-time behavior of some mathematical models for nematic liquid crystals

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

A model describing the evolution of a liquid crystal substance in the nematic phase is investigated in terms of two basic state variables: the velocity field u and the director field d, representing the preferred orientation of molecules in a neighborhood of any point in a reference domain. After recalling a known existence result, we investigate the long-time behavior of weak solutions. In particular, we show that any solution trajectory admits a non-empty ω-limit set containing only stationary solutions. Moreover, we give a number of sufficient conditions in order that the ω-limit set contains a single point. Our approach improves and generalizes existing results on the same problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blesgen T.: A generalization of the Navier-Stokes equations to two-phase flow. J. Phys. D Appl. Phys. 32, 1119–1123 (1999)

    Article  Google Scholar 

  2. Cavaterra, C., Rocca, E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms, preprint arXiv:1107.3947v1, 1–14 (2011)

  3. Climent-Ezquerra , B. , Guillén-Gonzáles F., Rodríguez-Bellido M.A.: Stability for nematic liquid crystals with stretching terms. Int. J. Bifurcation Chaos 20, 2937–2942 (2010)

    Article  MATH  Google Scholar 

  4. Chill R.: On the Łjasiewicz-Simon gradient inequality. J. Funct Anal 201, 572–601 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrasekhar S.: Liquid Crystals. Cambridge U. Press, Cambridge (1977)

    Google Scholar 

  6. de Gennes P.G.: The Physics of Liquid Crystals. Oxford Univ. Press, London (1974)

    Google Scholar 

  7. Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl E., Rocca E., Schimperna G.: On a non-isothermal model for nematic liquid crystals. Nonlinearity 24, 243–257 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feireisl, E., Frémond, M., Rocca, E., Schimperna, G.: A new approach to non-isothermal models for nematic liquid crystals, preprint arXiv:1104.1339v1, 1–21 (2011)

  10. Feireisl E., Simondon F.: Convergence for semilinear degenerate parabolic equations in several space dimensions. J. Dynam. Differ. Equ. 12, 647–673 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gajewski H., Griepentrog J.A.: A descent method for the free energy of multicomponent systems. Discrete Contin. Dyn. Syst. 15, 505–528 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Grasselli M., Wu H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. Z. Angew. Math. Phys. 62, 979–992 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leslie F.M.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lin F.-H., Liu C.: Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm. Pure Appl. Math. 48, 501–537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lin F.-H., Liu C.: Existence of solutions for the Ericksen-Leslie system. Arch. Ration. Mech. Anal. 154, 135–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. (French), Dunod, Gauthier-Villars, Paris (1969)

  17. Liu C., Shen J.: On liquid crystal flows with free-slip boundary conditions. Discrete Contin. Dynam. Syst. 7, 307–318 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon J.: Compact sets in the space L p(0, T ; B). Ann. Mat. Pura Appl. 146(4), 65–96 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete Contin. Dyn. Syst. 23, 455–475 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, H., Xu, X., Liu, C.: Asymptotic behavior for a nematic liquid crystal model with different Kkinematic transport properties, preprint arXiv:0901.1751v2, 1–26 (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Rocca.

Additional information

Communicated by J. Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzeltová, H., Rocca, E. & Schimperna, G. On the long-time behavior of some mathematical models for nematic liquid crystals. Calc. Var. 46, 623–639 (2013). https://doi.org/10.1007/s00526-012-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-012-0496-1

Mathematics Subject Classification (2000)

Navigation