Skip to main content
Log in

Volume preserving curvature flows in Lorentzian manifolds

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let N be a (n + 1)-dimensional globally hyperbolic Lorentzian manifold with a compact Cauchy hypersurface \({\mathcal{S}_{0}}\) and F a curvature function, either the mean curvature H, the root of the second symmetric polynomial \({{\sigma}_{2}=\sqrt{H_{2}}}\) or a curvature function of class (K*), a class of curvature functions which includes the nth root of the Gaussian curvature \({{\sigma}_{n}= K^{\frac{1}{n}}}\). We consider curvature flows with curvature function F and a volume preserving term and prove long time existence of the flow and exponential convergence of the corresponding graphs in the C -topology to a hypersurface of constant F-curvature, provided there are barriers. Furthermore we examine stability properties and foliations of constant F-curvature hypersurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H., Escher J.: Analysis II. Birkhäuser Verlag, Basel (2006)

    MATH  Google Scholar 

  2. Andrews, B.: Fully nonlinear parabolic equations in two space variables. ArXiv:math.AP/0402235 (2004)

  3. Bernal A.N., Sánchez M.: On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys. 243, 461–470 (2003)

    Article  MATH  Google Scholar 

  4. Bernal A.N., Sánchez M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257, 43–50 (2005)

    Article  MATH  Google Scholar 

  5. Cabezas-Rivas E., Miquel V.: Volume preserving mean curvature flow in the Hyperbolic space. Indiana Univ. Math. J. 56(5), 2061–2086 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cabezas-Rivas E., Sinestrari C.: Volume-preserving flow by powers of the m-th mean curvature. Calc. Var. Partial Differ. Equ. 38, 441–469 (2009)

    Article  MathSciNet  Google Scholar 

  7. Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43. AMS, Colloquium Publications (1995)

  8. Chiappinelli R., Nugari R.: The Nemitskii operator in Hölder spaces: some necessary and sufficient conditions. J. Lond. Math. Soc. 51, 365–372 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ecker K., Huisken G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135, 595–613 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Enz C.: The scalar curvature flow in Lorentzian manifolds. Adv. Calc. Var. 1, 323–343 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gage E.: On an area-preserving evolution equation for plane curves. Contemp. Math. 51, 51–62 (1986)

    Article  MathSciNet  Google Scholar 

  12. Gerhardt C.: Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds. J. Reine Angew. Math. 554, 157–199 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Gerhardt C.: Analysis 2. International Series in Analysis. International Press, Somerville (2006)

    Google Scholar 

  14. Gerhardt, C.: Curvature Problems. Series in Geometry and Topology, vol. 39. International Press, Somerville (2006)

  15. Gerhardt C.: Curvature flows in semi-Riemannian manifolds. Surv. Differ. Geom. 12, 113–165 (2007)

    MathSciNet  Google Scholar 

  16. Hawking S.W., Ellis G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  17. Huisken G.: The volume preserving mean curvature flow. J. Reine Angew. Math. 382, 35–48 (1987)

    MathSciNet  MATH  Google Scholar 

  18. Huisken G., Sinestrari C.: Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183(1), 45–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kröner, H.: Der inverse mittlere Krümmungsfluß in Lorentz Mannigfaltigkeiten. Diploma thesis, Heidelberg (2006)

  20. Lieberman G.: Second Order Parabolic Equations. World Scientific Publishing Co. Inc., River Edge (1996)

    Book  MATH  Google Scholar 

  21. McCoy J.: The mixed volume preserving mean curvature flow. Math. Zeit. 246, 155–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. McCoy J.: Mixed volume preserving curvature flows. Calc. Var. Partial Differ. Equ. 24, 131–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. O’Neill B.: Semi-Riemannian Geometry with Applications to General Relativity. Pure and Applied Mathematics, vol .103. Academic Press, New York (1983)

    Google Scholar 

  24. Schnuerer, O.C.: Partielle Differentialgleichungen 2. Lecture notes. http://www.math.uni-konstanz.de/~schnuere/skripte/pde2.pdf (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Makowski.

Additional information

Communicated by G. Huisken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowski, M. Volume preserving curvature flows in Lorentzian manifolds. Calc. Var. 46, 213–252 (2013). https://doi.org/10.1007/s00526-011-0481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0481-0

Mathematics Subject Classification (2000)

Navigation