Skip to main content
Log in

Existence and multiplicity results for Pucci’s operators involving nonlinearities with zeros

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the problem

$$ \left\{\begin{array}{ll} {-\varepsilon^{2}\mathcal{M}^+_{\lambda,\Lambda}(D^{2}u) = f (x, u)} \quad\; {\rm in} \; \Omega,\\ {u = 0} \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad {\rm on} \; \partial{\Omega}, \end{array} \right.$$

where Ω is a smooth bounded domain in \({\mathbb{R}^{N},N > 2,}\) and show it possesses nontrivial solutions for small values of ε provided f is a nonnegative continuous function which has a positive zero. The multiplicity result is based on degree theory together with a new Liouville type theorem for \({-{M}^+_{\lambda,\Lambda}(D^{2}u) = f(u)}\) in \({\mathbb{R}^{N}}\) for nonnegative nonlinearities with zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allendes A., Quaas A.: Multiplicity results for extremal operators through bifurcation. Discret. Contin. Dyn. Syst. 29, 51–65 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Armstrong, S., Sirakov, B.: Sharp Liouville results for Fully Nonlinear equations with power-growth nonlinearities (preprint).

  3. Amann H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Birindelli I., Demengel F.: Comparison principle and Liouville type results for singular fully nonlinear operators, Ann. Fac. Sci. Toulouse Math. (6) 13, 261–287 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busca J., Esteban M., Quaas A.: Nonlinear eigenvalues and bifurcation problems for Pucci’s Operator. Ann. Inst. H. Poincaré Anal. Non Linéaire 22, 187–206 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations. American mathematical society colloquium publications, vol. 43. American mathematical society, Providence (1995)

  7. Chen S., Li S.: On a nonlinear elliptic eigenvalue problem. J. Math. Anal. Appl. 307, 691–698 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caffarelli L.-A., Crandall M.-G., Kocan M., Świech A.: On viscosity solutions of fully nonlinear equations with measurable ingredients. Comm. Pure Appl. Math. 49, 365–397 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charro F., Colorado E., Peral I.: Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave–convex right-hand side. J. Differ. Equ. 246, 4221–4248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng J., Li W.: Nonnegative radial solutions to a class of elliptic equations involving the Pucci’s extremal operator. J. Math. Anal. Appl. 341, 386–397 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Crandall M., Lions P.-L.: Viscosity solutions of Hamilton Jacobi equations. Trans. Am. Math. Soc. 277, 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall M., Ishii H., Lions P.-L.: Users guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cutri A., Leoni F.: On the Liouville property for fully nonlinear equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 17, 219–245 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Felmer P., Quaas A.: Positive radial solutions to a ’semilinear’ equation involving the Pucci’s operator. J. Differ. Equ. 199, 376–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Felmer P., Quaas A.: Fundamental solutions and two properties of elliptic maximal and minimal operators. Trans. Am. Math. Soc. 361, 5721–5736 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felmer P., Quaas A.: Fundamental solutions and Liouville type theorems for nonlinear integral operators. Adv. Math. 226, 2712–2738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Felmer P., Quaas A., Sirakov B.: Landesman-Lazer type results for second order Hamilton-Jacobi-Bellman equations. J. Funct. Anal. 258, 4154–4182 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Figueiredo D.G., Lions P.-L.: On pairs of positive solutions for a class of semilinear elliptic problems. Indiana Univ. Math. J. 34, 591–606 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. García-Melián J., Sabina de Lis J.: Stationary profiles of degenerate problems when a parameter is large. Differ. Integral Equ. 13, 1201– (2000)

    MATH  Google Scholar 

  20. Gidas, B.: Symmetry properties and isolated singularities of positive solutions of nonlinear elliptic equations, in Nonlinear partial differential equations in engineering and applied science. In: Sternberg, R., Kalinowski, A., Papadakis, J. (eds.), Proceedings of the Conference, Kingston, R.I. 1979, Lecture Notes in Pure and Applied Mathematics, vol. 54, pp. 255–273. Deckerm (1980).

  21. Gidas B., Spruck J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Iturriaga L., Massa E., Sanchez J., Ubilla P.: Positive solutions for the p-Laplacian with a nonlinear term with zeros. J. Differ. Equ. 248, 309–327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Iturriaga L., Lorca S., Massa E.: Positive solutions for the p-Laplacian involving critical and supercritical nonlinearities with zeros. Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 763–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Iturriaga L., Lorca S., Montenegro M.: Existence of solutions to quasilinear elliptic equations with singular weights. Adv. Nonlinear Stud. 10, 109–120 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Lions P.-L.: On the existence of positive solutions of semilinear elliptic equations. SIAM Rev. 24, 441–467 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lorca S., Ubilla P.: Partial differential equations involving subcritical, critical and supercritical nonlinearities. Nonlinear Anal. 56, 119–131 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ni W.M., Takagi I.: On the shape of least energy solution to a semilinear Neumann problem. Comm. Pure Appl. Math. 41, 819–851 (1991)

    Article  MathSciNet  Google Scholar 

  28. Ni W.M., Takagi I.: Locating the peaks of least energy solutions to a semilinear Neumann problem. Duke Math. J. 70, 247–281 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pucci C.: Operatori ellittici estremanti, Ann. Mat. Pura Appl. (4) 72, 141–170 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  30. Quaas A., Sirakov B.: Existence results for nonproper elliptic equations involving the Pucci operator. Comm. Part. Differ. Equ. 31, 987–1003 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Świech A.: W 1,p-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv. Differ. Equ. 2, 1005–1027 (1997)

    MATH  Google Scholar 

  32. Winter N.: W 2,p and W 1,p-estimates at the boundary for solutions of fully nonlinear uniformly elliptic equations. Z. Anal. Anwend. 28, 129–164 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salomón Alarcón.

Additional information

Communicated by A. Malchiodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, S., Iturriaga, L. & Quaas, A. Existence and multiplicity results for Pucci’s operators involving nonlinearities with zeros. Calc. Var. 45, 443–454 (2012). https://doi.org/10.1007/s00526-011-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0465-0

Mathematics Subject Classification (2000)

Navigation