Skip to main content
Log in

The geometric Neumann problem for the Liouville equation

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Let Ω denote the upper half-plane \({\mathbb{R}_+^2}\) or the upper half-disk \({D_{\varepsilon}^+\subset \mathbb{R}_+^2}\) of center 0 and radius \({\varepsilon}\). In this paper we classify the solutions \({v\in\;C^2(\overline{\Omega}\setminus\{0\})}\) to the Neumann problem

$$\left\{\begin{array}{lll}{\Delta v+2 Ke^v=0\quad {\rm in}\,\Omega\subseteq \mathbb{R}^2_+=\{(s, t)\in \mathbb{R}^2: t >0 \},}\\ {\frac{\partial v}{\partial t}=c_1e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s >0 \},}\\ {\frac{\partial v}{\partial t}=c_2e^{v/2}\quad\quad\quad{\rm on}\,\partial\Omega\cap\{s <0 \},}\end{array}\right.$$

where \({K, c_1, c_2 \in \mathbb{R}}\), with the finite energy condition \({\int_{\Omega} e^v < \infty}\)As a result, we classify the conformal Riemannian metrics of constant curvature and finite area on a half-plane that have a finite number of boundary singularities, not assumed a priori to be conical, and constant geodesic curvature along each boundary arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bryant R.L.: Surfaces of mean curvature one in hyperbolic space. Astérisque 154(155), 321–347 (1987)

    Google Scholar 

  2. Chen W., Li C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou K.S., Wan T.: Asymptotic radial symmetry for solutions of Δue u = 0 in a punctured disk. Pacific J. Math. 163, 269–276 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Chipot M., Shafir I., Fila M.: On the solutions to some elliptic equations with nonlinear Neumann boundary conditions. Adv. Differ. Equ. 1, 91–110 (1996)

    MATH  Google Scholar 

  5. Gálvez J.A., Mira P.: The Liouville equation in a half-plane. J. Differ. Equ. 246, 4173–4187 (2009)

    Article  MATH  Google Scholar 

  6. Hang F., Wang X.: A new approach to some nonlinear geometric equations in dimension two. Calc. Var. Partial Differ. Equ. 26, 119–135 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heins M.: On a class of conformal metrics. Nagoya Math. J. 21, 1–60 (1962)

    MathSciNet  MATH  Google Scholar 

  8. Jost J., Wang G., Zhou C.: Metrics of constant curvature on a Riemann surface with two corners on the boundary. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 437–456 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liouville J.: Sur l’equation aux differences partielles \({\frac{\partial^2 \log \lambda}{\partial u\partial v} \pm \frac{\lambda}{2a^2} =0}\). J. Math. Pures Appl. 36, 71–72 (1853)

    Google Scholar 

  10. Li Y.Y., Zhu M.: Uniqueness theorems through the method of moving spheres. Duke Math. J. 80, 382–417 (1995)

    Article  Google Scholar 

  11. Marty F.: Recherches sur le répartition des valeurs d’une fonction méromorphe. Ann. Fac. Sci. Univ. Toulouse 23, 183–261 (1931)

    Article  MathSciNet  MATH  Google Scholar 

  12. Montel, P.: Leçons sur les familles normales des fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927

    Google Scholar 

  13. Nehari, Z.: Conformal mapping. New York, McGraw-Hill, 1952

    MATH  Google Scholar 

  14. Nitsche J.C.C.: Über die isolierten Singularitäen der Lösungen von Δue u. Math. Z. 68, 316–324 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ou B.: A uniqueness theorem for harmonic functions on the upper half plane. Conformal Geom. Dyn. 4, 120–125 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Warnecke, G.: Über die Darstellung von Lösungen der partiellen Differentialgleichung \({(1+ \delta z\bar{z})^2w_{z\bar{z}} = \delta-\varepsilon e^{2w}}\). Bonner Math. Schr. 34 (1968)

  17. Zhang L.: Classification of conformal metrics on \({\mathbb{R}_+^2}\) with constant Gauss curvature and geodesic curvature on the boundary under various integral finiteness assumptions. Calc. Var. Partial Differ. Equ. 16, 405–430 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Gálvez.

Additional information

Communicated by J. Jost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gálvez, J.A., Jiménez, A. & Mira, P. The geometric Neumann problem for the Liouville equation. Calc. Var. 44, 577–599 (2012). https://doi.org/10.1007/s00526-011-0445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-011-0445-4

Mathematics Subject Classification (2000)

Navigation