New regularity theorems for non-autonomous variational integrals with (p, q)-growth

  • Dominic BreitEmail author


One prominent problem in the calculus of variations is minimizing anisotropic integrals with a (p, q)-elliptic density F depending on the gradient of a function \({w : \Omega \rightarrow \mathbb{R}^N}\) with \({\Omega \subset \mathbb{R}^n}\) . The best known sufficient bound for regularity of solutions is qp (n + 2)/n. On the other hand, if we allow an additional x-dependence of the density we have the much weaker result qp (n + 1)/n. If one additionally imposes the local boundedness of the minimizer, then these bounds can be improved to qp + 2 and qp + 1. In this paper we give natural assumptions for F closing the gap between the autonomous and non-autonomous situation.

Mathematics Subject Classification (2000)

49 N 60 49 N 99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Acerbi E., Fusco N.: Partial regularity of minimizers of non-quadratic functionals: the case 1 < p < 2. J. Math. Anal. Appl. 140, 115–135 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Acerbi E., Mingione G.: Gradient estimates for the p(x)-Laplacean system. J. Reine Angew. Math. (Crelles J.) 584, 117–148 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bildhauer, M.: Convex variational problems: linear, nearly linear and anisotropic growth conditions. In: Lecture Notes in Mathematics 1818. Springer, Berlin (2003)Google Scholar
  5. 5.
    Breit, D.: Regularitätssätze für Variationsprobleme mit anisotropen Wachstumsbedingungen. PhD thesis, Saarland University (2009)Google Scholar
  6. 6.
    Bildhauer M., Fuchs M.: Partial regularity for variational integrals with (s,μ, q)-growth. Calc. Var. Partial Differ. Equ. 13, 537–560 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bildhauer, M., Fuchs, M.: Elliptic variational problems with nonstandard growth. In: Rozhkovska T. (eds.) International Mathematical Series, Vol. I, Nonlinear Problems in Mathematical Physics and Related Topics I, in Honor of Prof. O.A. Ladyzhenskaya. Novosibirsk, Russia (in Russian), pp. 49–62. Kluwer/ Plenum Publishers (in English), pp. 53–66 (2002)Google Scholar
  8. 8.
    Bildhauer M., Fuchs M.: C 1,α-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ. 24(3), 309–340 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Carozza M., Fusco N., Mingione G.: Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Math. Pura Appl. IV, Ser 175, 141–164 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cupini G., Guidorzi M., Mascolo E.: Regularity of minimizers of vectorial integrals with pq growth. Nonlinear Anal. 54(4), 591–616 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Coscia, A., Mingione, G., (1999) Hölder continuity of the gradient of p(x) harmonic mappings. Comptes Rendus de l’Académie des Sciences—Ser. I—Mathematics 328, 363–368 (1999)Google Scholar
  12. 12.
    D’Ottavio, A., Leonetti, F., Musciano, C.: Maximum principle for vector valued mappings minimizing variational integrals. Atti Sem. Mat. Fis. Univ. Modena XLVI, 677–683 (1998)Google Scholar
  13. 13.
    Esposito L., Leonetti F., Mingione G.: Higher integrability for minimizers of integral functionals with (p, q) growth. J. Differ. Equ. 157, 414–438 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Esposito L., Leonetti F., Mingione G.: Regularity for minimizers of functionals with p-q growth. Nonlinear Differ Equ Appl 6(2), 133–148 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Esposito, L., Leonetti, F., Mingione, G.: Regularity for minimizers of irregular integrals with (p,q)-growth. Forum Math. 14, 245–272 (2002)Google Scholar
  16. 16.
    Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with (p, q)-growth. J. Differ. Equ. 204, 5–55 (2004)Google Scholar
  17. 17.
    Fonseca I., Maly J., Mingione G.: Scalar minimizers with fractal singular sets. Arch. Ration. Mech. Anal. 172, 295–312 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Fuchs, M.: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. Math. Nachrichten. (2010). doi: 10.1002/mana.200810189
  19. 19.
    Giaquinta M.: Growth conditons and regularity, a counterexample. Manus. Math. 59, 245–248 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Birkhäuser Verlag, Basel (1993)Google Scholar
  21. 21.
    Giaquinta M., Modica G.: Remarks on the regularity of the minimizers of certain degenerate funcionals. Manus. Math 57, 55–99 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)zbMATHGoogle Scholar
  23. 23.
    Hamburger C.: Regularity of differential forms minimizing degenerate elliptic functionals. J. Reine Angew. Math. 431, 7–64 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hong, M.C.: Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. U.M.I. 6-A(7), 91–101 (1992)Google Scholar
  25. 25.
    Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Nauka, Moskow/ English Translation: Academic Press, New York (1964/1968)Google Scholar
  26. 26.
    Marcellini P.: Regularity of minimizers of integrals in the calcules of variations with non standard growth condtions. Arch. Ration. Mech. Anal. 105, 267–284 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Marcellini P.: Regularity and existence of elliptic equations with (p,q)-growth conditions. J. Differ. Equ. 90, 1–30 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Stampacchia G.: Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficients dicontinus. Ann. Inst. Fourier Grenoble 15(1), 189–258 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Uhlenbeck K.: Regularity for a class of nonlinear elliptic systems. Acta. Math. 138, 219–240 (1977)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of MathematicsSaarland UniversitySaarbrückenGermany

Personalised recommendations