Skip to main content
Log in

Cite this article

Abstract

Using the strong maximum principle, we obtain a constant rank theorem for the k-convex solutions of semilinear elliptic partial differential equations. As an application we obtain an existence theorem of k-convex starshaped hypersurface with prescribed mean curvature in R n+1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Alvarez O., Lasry J.M., Lions P.-L.: Convexity viscosity solutions and state constraints. J. Math. Pures Appl. 76, 265–288 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bian B.J., Guan P.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177(2), 307–335 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Böhm C., Wilking B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167(3), 1079–1097 (2008)

    Article  MATH  Google Scholar 

  4. Caffarelli L., Friedman A.: Convexity of solutions of some semilinear elliptic equations. Duke Math. J. 52, 431–455 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli L., Guan P., Ma X.N.: A constant rank theorem for solutions of fully nonlinear elliptic equations. Comm. Pure Appl. Math. 60(12), 1769–1791 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caffarelli L., Nirenberg L., Spruck J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen H.: Pointwise 1/4-pinched 4-manifolds. Ann. Global Anal. Geom. 9, 161–176 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fraser A.: Minimal disks and two-convex hypersurfaces. Am. J. Math. 124(3), 483–493 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraser A.: Index estimates for minimal surfaces and k-convexity. Proc. Am. Math. Soc. 135(11), 3733–3744 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guan P., Lin C.S., Ma X.N.: The Christoffel-Minkowski problem II: Weingarten curvature equations. Chin. Ann. Math. Ser. B 27(6), 595–614 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guan P., Lin C.S., Ma X.N.: The existence of convex body with prescribed curvature measures. Int. Math. Res. Not. IMRN 11, 1947–1975 (2009)

    MathSciNet  Google Scholar 

  12. Guan P., Ma X.N.: The Christoffel-Minkowski problem I: convexity of solutions of a Hessian equations. Invent. Math. 151, 553–577 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Harvey F.R., Blaine Lawson H.: Dirichlet duality and the nonlinear Dirichlet problem. Comm. Pure Appl. Math. 62(3), 396–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huisken G., Sinestrari C.: Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175, 137–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kawohl B.: A remark on N.Korevaar’s concavity maximum principle and on the asymptotic uniqueness of solutions to the plasma problem. Math. Methods Appl. Sci. 8, 93–101 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kennington A.U.: Power concavity and boundary value problems. Indiana Univ. Math. J. 34, 687–704 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korevaar N.J.: Capillary surface convexity above convex domains. Indiana Univ. Math. J. 32, 73–81 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Korevaar N.J.: Convex solutions to nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. J. 32, 603–614 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Korevaar N.J., Lewis J.: Convex solutions of certain elliptic equations have constant rank hessians. Arch. Ration. Mech. Anal. 91, 19–32 (1987)

    Article  MathSciNet  Google Scholar 

  20. Moore J.D., Schulte T.: Minimal disks and compact hypersurfaces in Euclidean space. Proc. Am. Math. Soc. 94(2), 321–328 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schneider R.: Convex bodies: Brunn–Minkowski theory. Cambridge University, Cambridge (1993)

    Book  MATH  Google Scholar 

  22. Sha J.P.: Handlebodies and p-convexity. J. Differ. Geom. 25(3), 353–361 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Sha J.P.: p-convex Riemannian manifolds. Invent. Math. 83(3), 437–447 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Singer I., Wong B., Yau S.T., Yau S.S.T.: An estimate of gap of the first two eigenvalues in the Schrodinger operator. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12, 319–333 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Wu H.: Manifolds of partially positive curvature. Indiana Univ. Math. J. 36(3), 525–548 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Han.

Additional information

Communicated by C. S. Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Han, F., Ma, XN. & Wu, D. The existence of k-convex hypersurface with prescribed mean curvature. Calc. Var. 42, 43–72 (2011). https://doi.org/10.1007/s00526-010-0379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0379-2

Mathematics Subject Classification (2000)

Navigation