Skip to main content
Log in

The fractional Landau–Lifshitz–Gilbert equation and the heat flow of harmonic maps

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence of global weak solutions to the periodic fractional Landau–Lifshitz–Gilbert equation through the Ginzburg–Landau approximation and the Galerkin approximation. Since the nonlinear term is nonlocal and of full order of the equation, some special structures of the equation, the commutator estimate and some calculus inequalities of fractional order are exploited to get the convergence of the approximating solutions. The equation considered in this paper can also be regarded as a generalization of the heat flow of harmonic maps to the fractional order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges F., Soyeur A.: On global weak solutions for Landau-Lifshitz equations: existence and nonuniqueness. Nonl. Anal. TMA 19(11), 1071–1084 (1992)

    Article  MathSciNet  Google Scholar 

  2. Carbou G., Fabrie P.: Time average in micromagnetism. J. Differ. Equ. 147(2), 383–409 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chang N.-H., Uhlenbeck K.: Schrödinger maps. Commun. Pure Appl. Math. 53(5), 0590–0602 (2000)

    Article  MathSciNet  Google Scholar 

  4. Chen Y.: The weak solutions to the evolution problems of harmonic maps. Math. Z. 201, 69–74 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen Y., Struwe M.: Existence and partial regularity for the het flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coifman, R., Meyer, Y.: Nonlinear harmonic analysis, operator theory and P.D.E. In: Beijing Lectures in Harmonic Analysis, pp. 3–45. Princeton University Press (1986)

  7. Constantin P.: Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett. 89, 184501 (2002)

    Article  Google Scholar 

  8. Constantin P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin P., Cordoba D., Wu J.: On the critical dissipative quasi-geostrophic equations. Indiana Univ. Math. J. 50, 97–107 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin P., Wu J.: Behavior of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding W., Wang Y.: Schrödinger flow of maps into symplectic manifolds. Sci. China Ser. A 41(7), 746–755 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, S., Wang, C.: Finite time singularity of the Landau-Lifshitz-Gilbert equation. Int. Math. Res. Not. 2007, 1–25 (2007)

  14. Ding W., Tang H., Zeng C.: Self-similar solutions of Schrodinger flows. Calc. Var. 34(2), 267–277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eells J., Sampson H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gilbert T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243–1255 (1955)

    Google Scholar 

  17. Guan M., Gustafson S., Tsai T.P.: Global existence and blow-up for harmonic map heat flow. J. Differ. Equ. 246, 1–20 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo B., Hong M.: The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps. Calc. Var. 1, 311–334 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gustafson, S., Nakanishi, K., Tsai, T.P.: Asymptotic stability, concentration, and oscillation in harmonic map heat-flow. Landau-Lifshitz, and Schrodinger maps on R 2. Commun. Math. Phys. 300, 205–242 (2010)

    Google Scholar 

  20. Ju N.: Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju N.: The Maximum principle and the global attractor for the dissipative 2d quasi-geostrophic equations. Commun. Math. Phys. 155, 161–181 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kato T.: Liapunov Functions and Monotonicity in the Navier-Stokes Equations, Lecture Notes in Mathematics, vol. 1450. Springer-Verlag, Berlin (1990)

    Google Scholar 

  23. Kato T., Ponce G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kenig C., Ponce G., Vega L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kenig C., Ponce G., Vega L.: Well-posedness and scattering results for the generalized korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 453–620 (1993)

    Article  MathSciNet  Google Scholar 

  26. Landau, L.D., Lifshitz, E.M.: On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sowj. 8, 153–169 (1935); Reproduced in: Collected papers of L.D. Landau, pp. 101–114. Pergamon Press, New York (1965)

  27. Lin F., Wang C.: The analysis of harmonic maps and their heat flows. World Scientific, River Edge (2008)

    Book  MATH  Google Scholar 

  28. Lions, J.L.: Quelques methodes de resolution des problemes aux limits non lineeaires. Dunod, Paris (1969)

  29. Liu X.: Partial regularity for the Landau-Lifshitz systems. Calc. var. 20(2), 153–173 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  31. Nahmod A., Stefanov A., Uhlenbeck K.: On Schrödinger maps. Commun. Pure Appl. Math. 56(1), 114–151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny I.: Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198. Academic Press, San Diego (1999)

    Google Scholar 

  33. Shatah J., Zeng C.: Schrödinger maps and anti-ferromagnetic chains. Commun. Math. Phys. 262, 299–315 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sulem P.L., Sulem C., Bardos C.: On the continuous limit for a system of classical spins. Commun. Math. Phys. 107, 431–454 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  36. Struwe M.: On the evolution of harmonic mappings of Riemannian surfaces. Comm. Math. Helv. 60, 558–581 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tarasov V.E.: Fractional Heisenberg equation. Phys. Lett. A 372, 2984–2988 (2008)

    Article  MathSciNet  Google Scholar 

  38. Temam R.: Infinite-dimensional dynamical systems in mechanics and physics. Springer-Verlag, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueke Pu.

Additional information

Communicated by M. Struwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pu, X., Guo, B. The fractional Landau–Lifshitz–Gilbert equation and the heat flow of harmonic maps. Calc. Var. 42, 1–19 (2011). https://doi.org/10.1007/s00526-010-0377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0377-4

Mathematics Subject Classification (2000)

Navigation