Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds

  • Mykhaylo ChursinEmail author
  • Lars Schäfer
  • Knut Smoczyk


Given an almost para-Kähler manifold equipped with a metric and para-complex connection, we define a generalized second fundamental form and generalized mean curvature vector of space-like Lagrangian submanifolds. We then show that the deformation induced by this variant of the mean curvature vector field preserves the Lagrangian condition, if the connection satisfies also some Einstein condition. In case the almost para-Kähler structure is integrable, the flow coincides with the classical mean curvature flow in the pseudo-Riemannian context.

Mathematics Subject Classification (2000)

Primary: 53C44 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alekseevsky D.V., Medori C., Tomassini A.: Homogeneous para-Kähler Einstein manifolds. Russ. Math. Surv. 64, 1–43 (2009)CrossRefzbMATHGoogle Scholar
  2. 2.
    Behrndt, T.: Lagrangian mean curvature flow in almost Kähler-Einstein manifolds. In: Proceedings of the Conference “Complex and Differential Geometry”, Hannover 2009. arXiv:0812.4256v2 (2009, accepted)Google Scholar
  3. 3.
    Cruceanu V., Fortuny P., Gadea P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Datta B., Subramanian S.: Nonexistence of almost complex structures on products of even-dimensional spheres. Topol. Appl. 36(1), 39–42 (1990). doi: 10.1016/0166-8641(90)90034-Y CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Ecker K.: Interior estimates and longtime solutions for mean curvature flow of noncompact spacelike hypersurfaces in Minkowski space. J. Differ. Geom. 45, 481–498 (1997)MathSciNetGoogle Scholar
  6. 6.
    Ecker K., Huisken G.: Parabolic methods for the construction of spacelike slices of prescribed mean curvature in cosmological spacetimes. Commun. Math. Phys. 135, 595–613 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Etayo F., Santamaría R., Trías U.R.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24(1), 33–59 (2006). doi: 10.1016/j.difgeo.2005.07.002 CrossRefzbMATHGoogle Scholar
  8. 8.
    Gadea P.M., Montesinos Amilibia A.: Spaces of constant para-holomorphic sectional curvature. Pac. J. Math. 136(1), 85–101 (1989)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Huang, R.L.: Lagrangian mean curvature flow in Pseudo-Euclidean space. arXiv:0908.3070 (2009)Google Scholar
  10. 10.
    Ivanov S., Zamkovoy S.: Parahermitian and paraquaternionic manifolds. Differ. Geom. Appl. 23(2), 205–234 (2005). doi: 10.1016/j.difgeo.2005.06.002 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kaneyuki S.: On classification of para-Hermitian symmetric spaces. Tokyo J. Math. 8(2), 473–482 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Kaneyuki S., Kozai M.: Paracomplex structures and affine symmetric spaces. Tokyo J. Math. 8(1), 81–98 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Li, G., Salavessa, I.M.C.: Mean curvature flow of spacelike graphs. arXiv:0804.0783 v4 (2008)Google Scholar
  14. 14.
    Smoczyk, K.: A canonical way to deform a Lagrangian submanifold. arXiv:dg-ga/9605005 (1996)Google Scholar
  15. 15.
    Smoczyk, K., Wang, M.-T.: Generalized Lagrangian mean curvature flows in symplectic manifolds. arXiv:0910.2667v1 (2009)Google Scholar
  16. 16.
    Vaisman, I.: Symplectic Geometry and Secondary Characteristic Classes. Progress in Mathematics, vol. 72. Birkhäuser Boston Inc., Boston (1987)Google Scholar
  17. 17.
    Xin, Y.: Minimal Submanifolds and Related Topics. Nankai Tracts in Mathematics, vol. 8. World Scientific Publishing Co. Inc., River Edge (2003)Google Scholar
  18. 18.
    Yano, K., Ishihara, S.: Tangent and Cotangent Bundles: Differential Geometry. Pure and Applied Mathematics, No. 16. Marcel Dekker Inc., New York (1973)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Fakultät für Mathematik und Physik, Institut für DifferentialgeometrieLeibniz Universität HannoverHannoverGermany

Personalised recommendations