Skip to main content
Log in

Global solutions of the heat equation with a nonlinear boundary condition

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the heat equation with a nonlinear boundary condition,

$$(P) \left\{\begin{array}{ll} \partial_t u = \Delta u, & x \in \Omega, \quad t > 0, \\ \partial_\nu u=u^p, & x \in \partial \Omega,\quad t > 0,\\ u (x,0) = \phi (x),& x\in\Omega, \end{array}\right.$$

where \({\Omega = \{x = (x^{\prime},x_N) \in {\bf R}^{N} : x_N > 0\}, N \ge 2, \partial_t = \partial{/}\partial t , \partial_\nu = -\partial{/}\partial x_{N}}\), p > 1 + 1/N, and (N − 2)p < N. In this paper we give a complete classification of the large time behaviors of the nonnegative global solutions of (P).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A.: Sobolev Spaces. Pure and Applied Mathematics, vol. 65. Academic Press, New York (1975)

    Google Scholar 

  2. Chlebík M., Fila M.: From critical exponents to blow-up rates for parabolic problems. Rend. Mat. Appl. 19, 449–470 (1999)

    MATH  MathSciNet  Google Scholar 

  3. Chlebík, M., Fila, M.: Some recent results on blow-up on the boundary for the heat equation. In: Evolution Equations: Existence, Regularity and Singularities, Banach Center Publ., vol. 52, pp. 61–71. Polish Acad. Sci., Warsaw (2000)

  4. Deng K., Fila M., Levine H.A.: On critical exponents for a system of heat equations coupled in the boundary conditions. Acta Math. Univ. Comenian. 63, 169–192 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Escobedo M., Kavian O.: Variational problems related to self-similar solutions of the heat equation. Nonlinear Anal. 11, 1103–1133 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fila M.: Boundedness of global solutions for the heat equation with nonlinear boundary conditions. Comment. Math. Univ. Carol. 30, 479–484 (1989)

    MATH  MathSciNet  Google Scholar 

  7. Fila, M., Filo, J.: Blow-up on the boundary: a survey. In: Singularities and Differential Equations. Banach Center Publ., vol. 33, pp. 67–78. Polish Acad. Sci., Warsaw (1996)

  8. Fila M., Filo J., Lieberman G.M.: Blow-up on the boundary for the heat equation. Calc. Var. Partial Differ. Equ. 10, 85–99 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Galaktionov V.A., Levine H.A.: On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary. Isr. J. Math. 94, 125–146 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Giga Y.: A bound for global solutions of semilinear heat equations. Commun. Math. Phys. 103, 415–421 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hu B.: Nonexistence of a positive solution of the Laplace equation with a nonlinear boundary condition. Differ. Integr. Equ. 7, 301–313 (1994)

    MATH  Google Scholar 

  12. Hu B., Yin H.-M.: The profile near blowup time for solution of the heat equation with a nonlinear boundary condition. Trans. Am. Math. Soc. 346, 117–135 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ishige K.: On the behavior of the solutions of degenerate parabolic equations. Nagoya Math. J. 155, 1–26 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Ishige K.: An intrinsic metric approach to uniqueness of the positive Cauchy-Neumann problem for parabolic equations. J. Math. Anal. Appl. 276, 763–790 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ishige, K., Ishiwata, M., Kawakami, T.: The decay of the solutions for the heat equation with a potential. Indiana Univ. Math. J. (to appear)

  16. Kavian O.: Remarks on the large time behaviour of a nonlinear diffusion equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 4, 423–452 (1987)

    MATH  MathSciNet  Google Scholar 

  17. Kawakami, T.: Global existence of solutions for the heat equation with a nonlinear boundary condition (preprint)

  18. Kawanago T.: Asymptotic behavior of solutions of a semilinear heat equation with subcritical nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 13, 1–15 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. American Mathematical Society Translations, vol. 23. American Mathematical Society, Providence (1968)

  20. Quittner P., Souplet P.: Bounds of global solutions of parabolic problems with nonlinear boundary conditions. Indiana Univ. Math. J. 52, 875–900 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Quittner P., Rodríguez-Bernal A.: Complete and energy blow-up in parabolic problems with nonlinear boundary conditions. Nonlinear Anal. 62, 863–875 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Quittner, P., Souplet, P.: Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States. Birkhäuser Advanced Texts: Basler Lehrbücher Birkhäuser Verlag, Basel (2007)

  23. Trudinger N.S.: On Harnack type inequalities and their application to quasilinear elliptic equations. Commun. Pure Appl. Math. 20, 721–747 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trudinger N.S.: Pointwise estimates and quasilinear parabolic equations. Commun. Pure Appl. Math. 21, 205–226 (1968)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ishige.

Additional information

Communicated by Y.Giga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishige, K., Kawakami, T. Global solutions of the heat equation with a nonlinear boundary condition. Calc. Var. 39, 429–457 (2010). https://doi.org/10.1007/s00526-010-0316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-010-0316-4

Mathematics Subject Classification (2000)

Navigation