Skip to main content
Log in

Critical points of solutions of degenerate elliptic equations in the plane

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the minimizer u of a convex functional in the plane which is not Gâteaux-differentiable. Namely, we show that the set of critical points of any C 1-smooth minimizer can not have isolated points. Also, by means of some appropriate approximating scheme and viscosity solutions, we determine an Euler–Lagrange equation that u must satisfy. By applying the same approximating scheme, we can pair u with a function v which may be regarded as the stream function of u in a suitable generalized sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alessandrini G.: Critical points of solutions to the p-Laplace equation in dimension two. Boll. Univ. Math. Ital. A (7) 1(2), 239–246 (1987)

    MATH  MathSciNet  Google Scholar 

  2. Alessandrini G., Magnanini R.: The index of isolated critical points and solutions of elliptic equations in the plane. Ann. Scuola Norm. Super. Pisa Cl. Sci. (4) 19(4), 567–589 (1992)

    MATH  MathSciNet  Google Scholar 

  3. Alessandrini G., Magnanini R.: Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions. SIAM J. Math. Anal. 25(5), 1259–1268 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ambrosio L., Fusco N., Pallara D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press/Oxford University Press, New York (2000)

    Google Scholar 

  5. Aronsson G.: On the partial differential equation u 2 x u xx +  2u x u y u xy +  u 2 y u yy  = 0. Ark. Mat. 7, 395–425 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aronsson G.: On certain p-harmonic functions in the plane. Manuscr. Math. 61(1), 79–101 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Aronsson G., Lindqvist P.: On p-harmonic functions in the plane and their stream functions. J. Differ. Equ. 74(1), 157–178 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. De Silva, D., Savin, O.: Minimizers of convex functionals arising in random surfaces. Preprint. http://arxiv.org/abs/0809.3816 (2008)

  9. Evans, L.C.: Weak convergence methods for nonlinear partial differential equations, vol 74 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC (1990)

  10. Evans L.C., Gariepy R.F.: Some remarks concerning quasiconvexity and strong convergence. Proc. R. Soc. Edinb. Sect. A 106(1–2), 53–61 (1987)

    MATH  MathSciNet  Google Scholar 

  11. Evans L.C., Gariepy R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992)

    Google Scholar 

  12. Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations. I, volume 37 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Berlin, Cartesian Currents (1998)

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer, Berlin, Reprint of the 1998 edition (2001)

  14. Giusti E.: Direct Methods in the Calculus of Variations. World Scientific Publishing Co. Inc., River Edge, NJ (2003)

    Book  MATH  Google Scholar 

  15. Hardt R., Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N.: Critical sets of solutions to elliptic equations. J. Differ. Geom. 51(2), 359–373 (1999)

    MATH  MathSciNet  Google Scholar 

  16. Ishibashi, T., Koike, S.: On fully nonlinear PDEs derived from variational problems of L p norms. SIAM J. Math. Anal. 33(3), 545–569 (electronic) (2001)

  17. Ishii H., Crandall M.G., Lions P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kawohl B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)

    MATH  MathSciNet  Google Scholar 

  19. Koike S.: A Beginner’s Guide to the Theory of Viscosity Solutions, volume 13 of MSJ Memoirs. Mathematical Society of Japan, Tokyo (2004)

    Google Scholar 

  20. Korobkov M.V.: On an analogue of Sard’s theorem for C 1-smooth functions of two variables. Sibirsk. Mat. Zh. 47(5), 1083–1091 (2006)

    MATH  MathSciNet  Google Scholar 

  21. Langenbach, A.: Verallgemeinerte und exakte Lösungen des Problems der elastisch-plastischen Torsion von Stäben. Math. Nachr. 28, 219–234 (1964/1965)

    Google Scholar 

  22. Magnanini, R., Talenti, G.: On complex-valued solutions to a 2-D eikonal equation. I. Qualitative properties. In Nonlinear partial differential equations (Evanston, IL, 1998), volume 238 of Contemporary Mathematics, pp. 203–229. American Mathematical Society, Providence, RI (1999)

  23. Magnanini, R., Talenti, G.: On complex-valued solutions to a two-dimensional eikonal equation. II. Existence theorems. SIAM J. Math. Anal. 34(4), 805–835 (electronic) (2003)

    Google Scholar 

  24. Magnanini R., Talenti G.: On complex-valued solutions to a 2D eikonal equation. III. Analysis of a Bäcklund transformation. Appl. Anal. 85(1–3), 249–276 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Payne L.E., Philippin G.A.: Some applications of the maximum principle in the problem of torsional creep. SIAM J. Appl. Math. 33(3), 446–455 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  26. Philippin G.A.: A minimum principle for the problem of torsional creep. J. Math. Anal. Appl. 68(2), 526–535 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schwarz G.: Hodge Decomposition—A Method for Solving Boundary Value Problems, volume 1607 of Lecture Notes in Mathematics. Springer, Berlin (1995)

    Google Scholar 

  28. Simon L.: Lectures on Geometric Measure Theory, volume 3 of Proceedings of the Centre for Mathematical Analysis, Australian National University. Australian National University Centre for Mathematical Analysis, Canberra (1983)

    Google Scholar 

  29. Talenti G.: Equazioni lineari ellittiche in due variabili. Matematiche (Catania) 21, 339–376 (1966)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Cecchini.

Additional information

Communicated by C. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchini, S., Magnanini, R. Critical points of solutions of degenerate elliptic equations in the plane. Calc. Var. 39, 121–138 (2010). https://doi.org/10.1007/s00526-009-0304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-009-0304-8

Mathematics Subject Classification (2000)

Navigation