Abstract
We prove under general assumptions that solutions of the thin obstacle or Signorini problem in any space dimension achieve the optimal regularity C 1,1/2. This improves the known optimal regularity results by allowing the thin obstacle to be defined in an arbitrary C 1,β hypersurface, β > 1/2, additionally, our proof covers any linear elliptic operator in divergence form with smooth coefficients. The main ingredients of the proof are a version of Almgren’s monotonicity formula and the optimal regularity of global solutions.
This is a preview of subscription content, access via your institution.
References
Athanasopoulos, I., Caffarelli, L.A.: Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 310 (2004), no.Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35(34), 49–66, 226
Athanasopoulos I., Caffarelli L.A., Salsa S.: The structure of the free boundary for lower dimensional obstacle problems. Am. J. Math. 130(2), 485–498 (2008)
Caffarelli L.A.: Further regularity for the Signorini problem. Comm. Partial Differ. Equ. 4(9), 1067–1075 (1979)
Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm. Partial Differ. Equ. 32(7–9), 1245–1260 (2007)
Caffarelli L.A., Salsa S., Silvestre L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171(2), 425–461 (2008)
Duvaut, G., Lions, J.-L.: Les inéquations en mécanique et en physique, Dunod, Paris, Travaux et Recherches Mathématiques, No. 21 (1972)
Frehse J.: On Signorini’s problem and variational problems with thin obstacles. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4(2), 343–362 (1977)
Friedman A.: Variational Principles and Free-Boundary Problems Pure and Applied Mathematics. A Wiley-Interscience Publication, Wiley, New York (1982)
Richardson, D.: Variational problems with thin obstacles. Ph.D. Thesis, University of British Columbia, Vancouver, BC (1978)
Silvestre L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)