Skip to main content
Log in

Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we study the limit, in the sense of the Γ-convergence, of sequences of two-dimensional energies of the type \({\int_\Omega A_n\nabla u\cdot\nabla u\,dx+\int_\Omega u^2d\mu_n}\), where A n is a symmetric positive definite matrix-valued function and μ n is a nonnegative Borel measure (which can take infinite values on compact sets). Under the sole equicoerciveness of A n we prove that the limit energy belongs to the same class, i.e. its reads as \({\hat F(u)+\int_\Omega u^2d\mu}\), where \({\hat F}\) is a diffusion independent of μ n and μ is a nonnegative Borel measure which does depend on \({\hat F}\) . This compactness result extends in dimension two the ones of [11,23] in which A n is assumed to be uniformly bounded. It is also based on the compactness result of [7] obtained for sequences of two-dimensional diffusions (without zero-order term). Our result does not hold in dimension three or greater, since nonlocal effects may appear. However, restricting ourselves to three-dimensional diffusions with matrix-valued functions only depending on two coordinates, the previous two-dimensional result provides a new approach of the nonlocal effects. So, in the periodic case we obtain an explicit formula for the limit energy specifying the kernel of the nonlocal term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellieud Bouchitté, G.: Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effects. Ann. Sc. Norm. Sup. Pisa, Cl. Sci. IV 26(3), 407–436 (1998)

    MATH  Google Scholar 

  2. Beurling, A., Deny, J.: Espaces de Dirichlet. Acta Mat. 99, 203–224 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  3. Braides, A.: Gamma-convergence for Beginners. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  4. Briane, M.: Homogenization of high-conductivity periodic problems: application to a general distribution of one-directional fibers. SIAM J. Math. Anal. 35(1), 33–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Briane, M.: Nonlocal effects in two-dimensional conductivity. Arch. Rat. Mech. Anal. 182(2), 255–267 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Briane, M., Casado–Díaz, J.: Two-dimensional div-curl results. Application to the lack of nonlocal effects in homogenization. Comm. Part. Diff. Equ. 32, 935–969 (2007)

    Article  MATH  Google Scholar 

  7. Briane, M., Casado–Díaz, J.: Asymptotic behaviour of equicoercive diffusion energies in dimension two. Calc. Var. PDE’s 29(4), 455–479 (2007)

    Article  MATH  Google Scholar 

  8. Briane, M., Casado–Díaz, J.: Uniform convergence of sequences of solutions of two-dimensional linear elliptic equations with unbounded coefficients (to appear)

  9. Briane, M., Tchou, N.: Fibered microstructures for some nonlocal Dirichlet forms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 30(4), 681–711 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Buttazzo, G., Dal Maso, G.: Γ-Limits of integral functionals. J. Anal. Math. 37, 145–185 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Calvo-Jurado, C., Casado-Díaz, J.: The limit of Dirichlet systems for variable monotone operators in general perforated domains. J. Math. Pur. Appl. 81, 471–493 (2002)

    Article  MATH  Google Scholar 

  12. Camar-Eddine, M., Seppecher, P.: Closure of the set of diffusion functionals with respect to the Mosco-convergence. Math. Models Methods Appl. Sci. 12(8), 1153–1176 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Carbone, L., Sbordone, C.: Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122, 1–60 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  14. Casado–Díaz, J.: Homogenisation of Dirichlet problems for monotone operators in varying domains. Proc. R. Soc. Edinb. Sect. A 127(3), 457–478 (1997)

    MATH  Google Scholar 

  15. Casado–Díaz, J.: Homogenization of general quasi-linear Dirichlet problems with quadratic growth in perforated domains. J. Math. Pures Appl. 76(5), 431–476 (1997)

    MATH  MathSciNet  Google Scholar 

  16. Casado–Díaz, J.: Homogenization of Dirichlet pseudomonotone problems with renormalized solutions in perforated domains. J. Math. Pures Appl. 79(6), 553–590 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Casado–Díaz, J., Dal Maso, G.: A weak notion of convergence in capacity with applications to thin obstacle problems. In: Ioffe, A., Reich, S., Shafrir, I.(eds) Calculus of variations and differential equations., pp. 56–64. Research Notes in Mathematics, vol. 410. Chapman & Hall (2000)

    Google Scholar 

  18. Casado-Díaz, J., Garroni, A.: Asymptotic behaviour of nonlinear elliptic systems on varying domains. SIAM J. Math. Anal. 31(3), 581–624 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Cioranescu, D., Murat, F.: Un terme étrange venu d’ailleurs. In: Brézis, H., Lions, J.L. (eds.) Nonlinear partial differential equations and their applications. Collège de France seminar, vol. II and III. Research Notes in Math., vol. 60, 70, pp. 98–138, 154–178. Pitman, London (1982)

  20. Dal Maso, G., Garroni, A.: New results on the asymptotic behaviour of Dirichlet problems in perforated domains. Math. Mod. Meth. Appl. Sci. 3, 373–407 (1994)

    Article  MathSciNet  Google Scholar 

  21. Dal Maso, G., Mosco, U.: Wiener-criterion and Γ-convergence. Appl. Math. Optim. 15, 15–63 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Dal Maso, G., Murat, F.: Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators. Ann. Sc. Norm. Sup. Pisa 7(4), 765–803 (1997)

    MATH  Google Scholar 

  23. Dal Maso, G., Murat, F.: Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains. Ann. Inst. H. Poincaré Anal. Non linéaire 21(4), 445–486 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Fenchenko, V.N., Khruslov, E.Ya.: Asymptotic of solution of differential equations with strongly oscillating matrix of coefficients which does not satisfy the condition of uniform boundedness. Dokl. AN Ukr.SSR 4 (1981)

  25. Fukushima, M.: Dirichlet Forms and Markov Processes. North Holland, New York (1980)

    MATH  Google Scholar 

  26. Marchenko, V.A., Khruslov, E.Ya.: Boundary Value Problems in Domains with a Fine-Grained Boundary (in Russian). Naukova Dumka, Kiev (1974)

    Google Scholar 

  27. Mosco, U.: Composite media and asymptotic Dirichlet forms. J. Funct. Anal. 123(2), 368–421 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Murat, F., Tartar, L.: H-convergence. In: Cherkaev, L., Kohn, R.V.(eds) Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations and their Applications, pp. 21–43. Birkaüser, Boston (1998)

    Google Scholar 

  29. Spagnolo, S.: Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 22(3), 571– (1968)

    Google Scholar 

  30. Tartar, L.: Cours Peccot, Collège de France (1977), partly written in [28]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Casado–Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briane, M., Casado–Díaz, J. Compactness of sequences of two-dimensional energies with a zero-order term. Application to three-dimensional nonlocal effects. Calc. Var. 33, 463–492 (2008). https://doi.org/10.1007/s00526-008-0171-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0171-8

Mathematics Subject Classification (2000)

Navigation