Skip to main content
Log in

Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We show a regularity criterion to the harmonic heat flow from 2-dimensional Riemannian manifold M into a sphere. It is shown that a weak solution of the harmonic heat flow from 2-dimensional manifold into a sphere is regular under the criterion

$$\int\limits_0^T\|\nabla u(\tau)\|_{BMO_r}^{2}d \tau$$

where BMO r is the space of bounded mean oscillations on M. A sharp version of the Sobolev inequality of the Brezis–Gallouet type is introduced on M. A monotonicity formula by the mean oscillation is established and applied for proving such a regularity criterion for weak solutions as above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bergh, J., Löfström, J.: Interpolation Spaces, An Introduction, Grundlehren der mathematischen Wissenschaften, vol. 223, Springer, Belrin (1976)

  4. Bertsch, M., Dal Passo, R., van der Hout, R.: Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Ration. Mech. Anal. 161(2), 93–112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsch, M., Dal Passo, R., Pisante, A.: Point singularities and nonuniqueness for the heat flow for harmonic maps.Comm. Partial Differ. Equ. 28(5-6), 1135–1160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezis, H., Gallouet, T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. T.M.A. 4, 677–681 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Degree theory and BMO; Part I: Compact manifolds without boundary. Selecta Math. New Ser. 1, 197–263 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embedding and convolution inequalities. Comm. Partial Differ. Equ. 5, 773–789 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  9. Qui, B.H.: Some aspects of weighted and non-weighted hardy spaces. In: Research of Hardy Spaces and Multi-variable Fourier Analysis by means of Real Analysis (Japanese). Suuriken Koukyuroku (RIMS Lecture Note, Kyoto University), vol. 383, pp. 38–56 (1980)

  10. Chen, Y.-M., Ding, W.-Y.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math. 99, 567–578 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chang, K.-C., Ding, W.-Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36, 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Cheng, X.: Estimates of the singular set of the evolution problem for harmonic map. J. Diff. Geom. 34, 169–174 (1991)

    MATH  Google Scholar 

  13. Chen, Y.-M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z. 201, 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coron, J.-M., Ghidaglia, J.-M.: Explision en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris 308, 339–344 (1989)

    MATH  MathSciNet  Google Scholar 

  15. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  16. Engler, H.: An alternative proof of the Brezis–Wainger inequality. Comm. Partial Differ. Equ. 14(4), 541–544 (1989)

    MATH  MathSciNet  Google Scholar 

  17. Evans, L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Rat. Mech. Anal. 116, 101–113 (1991)

    Article  MATH  Google Scholar 

  18. Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  19. Feldman, M.: Partial regularity for harmonic maps of evolution into spheres. Comm. Partial Diff. Equ. 19(5&6), 761–790 (1994)

    Article  MATH  Google Scholar 

  20. Freire, A.: Uniquness for the harmonic map flow in two dimensions. Clac. Var. 3, 95–105 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Giga, Y.: Solutions for semilinear Parabolic equations in L p and regularity of weak solutions of the Navier–Stokes system. J. Differ. Equ. 62, 186–212 (1986)

    Article  MathSciNet  Google Scholar 

  22. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equation of Second Order, 2nd edn. Springer, Berlin (1983)

    Google Scholar 

  23. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une sphére. C. R. Acad. Sci. Paris Ser. I 311, 519–524 (1990)

    MATH  Google Scholar 

  24. Kozono, H., Ogawa, T., Taniuchi, Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO with application to the Euler equations. Comm. Math. Phys. 214(1), 191–200 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Leray, J.: Sur le mouvement d’un liquide visqeux emplissant l’espace. Acta Math. 63, 193–248 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ohyama, T.: Interior regularity of weak solutions of the time-dependent Navier-Stokes equation. Proc. Jpn. Acad. 36, 273–277 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ogawa, T.: Sobolev inequality of logarithmic type and the limiting regularity condition to the harmonic heat flow. SIAM J. Math. Anal. 34(8), 1317–1329 (2003)

    MathSciNet  Google Scholar 

  29. Ogawa, T., Taniuchi, Y.: Critial Sobolev inequality and uniqueness problem to the Navier-Stokes equations. Tohoku Math. J. 56(1), 65–77 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. Pure. Appl. 48, 173–182 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  31. Qing, J.: On singularity of the heat flow for harmonic maps from surfaces into spheres. Comm. Anal. Geom. 3(2), 297–315 (1995)

    MATH  MathSciNet  Google Scholar 

  32. Sacks, J., Uhlenbeck, K.: The existence of minimal immersion of 2-spheres. Ann. Math. 113, 1–24 (1981)

    Article  MathSciNet  Google Scholar 

  33. Schoen, R.: Analytic aspects of the harmonic map problem. Publ. M.S.R.I. 2, 321–358 (1984)

    MathSciNet  Google Scholar 

  34. Schoen, R., Uhlenbeck, K.: A regularity theorem for harmonic maps. J. Diff. Geom. 17, 307–335 (1982)

    MathSciNet  MATH  Google Scholar 

  35. Serrin, J.: On the interior regularity of weak solutions of the Navier–Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  36. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princton (1970)

    MATH  Google Scholar 

  37. Struwe, M.: On the evolution of harmonic mappings of Riemaninan surfaces. Comment. Math. Helvetici 60, 558–581 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  38. Struwe, M.: On the evolution of harmonic maps in higher dimension. J. Diff. Geom. 28, 485–502 (1988)

    MATH  MathSciNet  Google Scholar 

  39. Struwe, M.: Geometric evolution problems. In: Haardt, R., Wolf, M. (eds.) Nonlinear Partial Differential Equations in Differential Geometry. IAS/Park City Mathematical Series, vol. 2, pp. 257–333. American Mathematical Society (1996)

  40. Topping, P.: Reverse bubbling and nonuniqueness in the harmonic map flow. Int. Math. Res. Not. 10, 505–520 (2002)

    Article  MathSciNet  Google Scholar 

  41. Topping, P.: Winding behaviour of finite-time singularities of the harmonic map heat flow. Math. Z. 247, 279–302 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, Birkhäuser-verlag, Basel, dynamics (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Misawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misawa, M., Ogawa, T. Regularity condition by mean oscillation to a weak solution of the 2-dimensional Harmonic heat flow into sphere. Calc. Var. 33, 391–415 (2008). https://doi.org/10.1007/s00526-008-0166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-008-0166-5

Mathematics Subject Classification (2000)

Navigation