Skip to main content
Log in

Nonradial solutions for a conformally invariant fourth order equation in \(\mathbb {R}^4\)

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the following Liouville equation in \({\mathbb{R}}^{4}\)

$$\Delta^{2}u = 6e^{4u}\,{\rm in}\,{\mathbb{R}}^{4}, \int \limits_{{\mathbb{R}}^{4}} e^{4u}dx < \infty.$$

For each fixed \(x^0 \in {\mathbb{R}}^{4}, 1 \le k \le 4, \alpha \in (1-\frac{k}{4}, 2)\) and a j  > 0 for 1 ≤ jk, we construct a solution to the above equation with the following asymptotic behavior:

$$u(x) = - \sum_{j=1}^{k}a_j (x_j - x_j^0)^2 - \alpha\,{\rm log}\,|x|+c_0 + o(1), |x| > 1,$$
$$\int \limits_{{\mathbb{R}}^{4}} e^{4u(x)}dx= \frac{4\pi^{2}\alpha}{3}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, S.-Y.A., Chen, W.: A note on a class of higher order conformally covariant equations. Discret. Contin. Dynam. Syst. 7(2), 275–281 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chang, S.-Y.A., Qing, J.: The zeta functional determinants on manifolds with boundary I. The formula. J. Funct. Anal. 147(2), 327–362 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, S.-Y.A., Yang, P.C.: Extremal metrics of zeta function determinants on 4-manifolds. Ann. Math. 142, 171–212 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang, S.-Y.A., Yang, P.C.: On uniqueness of solutions of nth order differential equations in conformal geometry. Math. Res. Lett. 4, 91–102 (1997)

    MATH  MathSciNet  Google Scholar 

  5. Chen, W., Li, C.: Classification of solutions of some nonlinear elliptic equations. Duke Math. J. 63, 615–622 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Graham, C.R., Jenne, R., Mason, L., Sparling, G.: Conformally invariant powers of the Laplacian. I. Existence. J. Lond. Math. Soc. 46(2), 557–565 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lin, C.S.: A classification of solutions of a conformally invariant fourth order equation in R n. Comment. Math. Helv. 73, 206–231 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. McOwen, R.C.: Conformal metrics in \(\mathbb {R}^2\) with prescribed Gaussian curvature and positive total curvature. Indiana Univ. Math. J. 34(1), 97–104 (1985)

    Article  MathSciNet  Google Scholar 

  9. McOwen, R.C.: The behavior of the laplacian on weighted sobolev spaces. Comm. Pure Appl. Math. 32(6), 783–795 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  10. Paneitz, S.: A quadratic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint (1983)

  11. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. 69, 55–83 (1990)

    MATH  MathSciNet  Google Scholar 

  12. Wei, J., Xu, X.: Classification of solutions of higher order conformally invariant equations. Math. Ann. 313, 207–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Ye, D. Nonradial solutions for a conformally invariant fourth order equation in \(\mathbb {R}^4\) . Calc. Var. 32, 373–386 (2008). https://doi.org/10.1007/s00526-007-0145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0145-2

Mathematics Subject Classification (2000)

Navigation