Skip to main content

Advertisement

Log in

The structure of branched transportation networks

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

The transportation problem can be formalized as the problem of finding the optimal paths to transport a measure μ + onto a measure μ with the same mass. In contrast with the Monge–Kantorovich formalization, recent approaches model the branched structure of such supply networks by an energy functional whose essential feature is to favor wide roads. Given a flow s in a road or a tube or a wire, the transportation cost per unit length is supposed to be proportional to s α with 0 < α < 1. For the Monge–Kantorovich energy α = 1 so that it is equivalent to have two roads with flow 1/2 or a larger one with flow 1. If instead 0 < α < 1, a road with flow \(s_1+s_2\) is preferable to two individual roads s 1 and s 2 because \((s_1+s_2)^\alpha < s_1^\alpha+s_2^\alpha\) . Thus, this very simple model intuitively leads to branched transportation structures. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electric power supply systems and in natural objects like the blood vessels or the trees. When \(\alpha > 1-\frac 1N\) such structures can irrigate a whole bounded open set of \({\mathbb{R}}^N\) . The aim of this paper is to give a mathematical proof of several structure and regularity properties empirically observed in transportation networks. It is first proven that optimal transportation networks have a tree structure and can be monotonically approximated by finite graphs. An interior regularity result is then proven according to which an optimal network is a finite graph away from the irrigated measure. It is also proven that the branching number of optimal networks has everywhere a universal explicit bound. These results answer questions raised in two recent papers by Xia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernot, M.: Irrigation and Optimal Transport. Ph.D. Thesis, École Normale Supérieure de Cachan (2005). http://tel.archives-ouvertes.fr/tel-00132078

  2. Bernot M., Caselles V. and Morel J.-M. (2005). Traffic Plans. Publicacions Matemàtiques 49: 417–451

    MATH  MathSciNet  Google Scholar 

  3. Bernot M., Caselles V. and Morel J.-M. (2006). Are there infinite irrigation trees? J. Math. Fluid Mech. 8: 311–332

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhashkaran S. and Salzborn F.J.M. (1979). Optimal design of gas pipeline networks. J. Oper. Res. Soc. 30: 1047–1060

    Article  Google Scholar 

  5. Brenier Y. (1993). The dual least action problem for an ideal, incompressible fluid. Arch. Rational Mech. Anal. 122: 323–351

    Article  MATH  MathSciNet  Google Scholar 

  6. Buttazzo G., Pratelli A. and Stepanov E. (2006). Optimal pricing policies for public transportation networks. SIAM J. Opt. 16: 826–853

    Article  MATH  MathSciNet  Google Scholar 

  7. Buttazzo, G., Pratelli, A., Solimini, S., Stepanov, E.: Optimal urban networks via mass transportation. Preprint (2007), available at http://cvgmt.sns.it/cgi/get.cgi/papers/butprasol07/

  8. Caselles, V., Morel, J.-M.: Irrigation. In: Tomarelli, F., Dal Maso, G. (eds.) Progress in Nonlinear Differential Equations and their Applications, vol. 51, pp. 81–90, Birkhaser (2002). VARMET 2001. Trieste, June, 2001

  9. De Villanova, G.: Singular Structures in some Variational Problems. Ph.D. Thesis, École Normale Supérieure de Cachan (2005)

  10. Devillanova G. and Solimini S. (2007). On the dimension of an irrigable measure. Rendiconti del Seminario Matematico della Universitá di Padova 117: 1–49

    MATH  MathSciNet  Google Scholar 

  11. Devillanova G. and Solimini S. (2007). Elementary properties of optimal irrigation patterns. Calc. Var. Partial Differential Equations 28: 317–349

    Article  MATH  MathSciNet  Google Scholar 

  12. Dudley R.M. (2002). Real Analysis and Probability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Gilbert E.N. (1967). Minimum cost communication networks. Bell Syst. Tech. J. 46: 2209–2227

    Google Scholar 

  14. Kantorovich L. (1942). On the transfer of masses. Dokl. Acad. Nauk. USSR 37: 7–8

    Google Scholar 

  15. Lee D.H. (1976). Low cost drainage networks. Networks 6: 351–371

    Article  MATH  Google Scholar 

  16. Maddalena F., Solimini S. and Morel J.M. (2003). A variational model of irrigation patterns. Interfaces Free Bound. 5: 391–416

    MATH  MathSciNet  Google Scholar 

  17. Maddalena, F., Solimini, S.: Transport distances and irrigation models. Preprint (2007), available at http://cvgmt.sns.it/papers/madsol07/

  18. Mauroy B., Filoche M., Weibel E. and Sapoval B. (2004). An optimal bronchial tree may be dangerous. Nature 427: 633–636

    Article  Google Scholar 

  19. Monge, G.: Mémoire sur la théorie des déblais et de remblais. Histoire de l’Académie Royale des Sciences de Paris, pp. 666–704 (1781)

  20. Paolini E. and Stepanov E. (2006). Optimal transportation networks as flat chains. Interfaces Free Bound. 8: 393–436

    Article  MATH  MathSciNet  Google Scholar 

  21. Xia Q. (2003). Optimal paths related to transport problems. Commun. Contemp. Math. 5: 251–279

    Article  MATH  MathSciNet  Google Scholar 

  22. Xia Q. (2004). Interior regularity of optimal transport paths. Calculus Variations Partial Differen. Equat. 20: 283–299

    Article  MATH  Google Scholar 

  23. Xia, Q.: Boundary regularity of optimal transport paths. Preprint (2005), available at http://www.ma.utexas.edu/users/qlxia/

  24. Xia Q. (2007). The formation of a tree leaf ESAIM Control Optim. Calc. Var. 13: 359–377

    MATH  Google Scholar 

  25. Xue G., Lillys T. and Dougherty D. (2000). Computing the minimum cost pipe network interconnecting one sink and many sources. SIAM J. Optim. 10: 22–42

    Article  MathSciNet  Google Scholar 

  26. Zhang J.Z. and Zhu D.T. (1996). A bilevel programming method for pipe network optimization. SIAM J. Optim. 6: 838–857

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Morel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernot, M., Caselles, V. & Morel, JM. The structure of branched transportation networks. Calc. Var. 32, 279–317 (2008). https://doi.org/10.1007/s00526-007-0139-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0139-0

Mathematics Subject Classification (2000)

Navigation