Skip to main content
Log in

Geometric evolution equations in critical dimensions

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We make a qualitative comparison of phenomena occurring in two different geometric flows: the harmonic map heat flow in two space dimensions and the Yang–Mills heat flow in four space dimensions. Our results are a regularity result for the degree-2 equivariant harmonic map flow, and a blow-up result for an equivariant Yang–Mills-like flow. The results show that qualitatively differing behaviours observed in the two flows can be attributed to the degree of the equivariance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cazenave T., Shatah J. and Tavildah-Zadeh A.S. (1998). Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang–Mills fields. Ann. Inst. Henri Poincaré (Physique théorique) 68: 315–349

    MATH  Google Scholar 

  2. Chang K.-C., Ding W.-Y. and Ye R. (1992). Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom. 36: 507–515

    MATH  MathSciNet  Google Scholar 

  3. Chang, K.-C., Ding, W.-Y.: A result on the global existence for heat flows of harmonic maps from D 2 into S 2. In: Coron, J.-M., Ghidaglia, J.-M., Hélein, F (eds.) Nematics. Defects, Singularities And Patterns in Nematic Liquid Crystals: Mathematical And Physical Aspects. In: Proceedings of NATO Advance Research Workshop, Orsay, France, May 28–June 1, 1990. NATO ASI Series, Series C: Mathematical and Physical Sciences, vol 332. Kluwer, Dordrecht (1990)

  4. Chen Y. and Ding W.-Y. (1990). Blow-up and global existence of heat flow of harmonic maps. Invent. Math. 99: 567–578

    Article  MATH  MathSciNet  Google Scholar 

  5. Coron J.-M. and Ghidaglia J.-M. (1989). Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci., Paris, Ser. I 308: 339–344

    MATH  MathSciNet  Google Scholar 

  6. Donaldson S.K., Kronheimer P.B. (1990) The Geometry of Four-Manifolds. Clarendon Press, Oxford

    MATH  Google Scholar 

  7. Dumitrascu O. (1982). Soluţii echivariante ale ecuaţiilor Yang–Mills. Stud. Cerc. Mat. 34: 329–333

    MATH  MathSciNet  Google Scholar 

  8. Eells J. and Lemaire L. (1978). A report on harmonic map. Bull. London Math. Soc. 10: 1–68

    Article  MATH  MathSciNet  Google Scholar 

  9. Eells J. and Lemaire L. (1988). Another report on harmonic map. Bull. London Math. Soc. 20: 385–524

    Article  MATH  MathSciNet  Google Scholar 

  10. Eells J. and Sampson J.H. (1964). Harmonic mappings of Riemannian manifolds. Am. J. Math. 86: 109–160

    Article  MATH  MathSciNet  Google Scholar 

  11. Grotowski J.F. (1993). Harmonic map heat flow for axially symmetric data. Manus. Math. 73: 207–228

    Article  MathSciNet  Google Scholar 

  12. Grotowski J.F. (2001). Finite time blow-up for the Yang–Mills flow in higher dimensions. Math. Z 237: 321–333

    Article  MATH  MathSciNet  Google Scholar 

  13. Hélein F. (2002). Harmonic Maps, Conservation Laws and Moving Frames. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Itoh M. (1981). Invariant connections and Yang–Mills solutions. Trans. Am. Math. Soc. 267: 229–236

    Article  MATH  Google Scholar 

  15. Jost, J.: Harmonic mappings between Riemannian manifolds. In: Proceedings Centre for Mathematics and its Applications, vol. 4. Australian National University Press, Canberra (1984)

  16. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasilinear equations of parabolic type and variational problems. Translations of Mathematical Monographs 23: American Mathematical Society, Providence (1968)

  17. Karcher H. and Wood J.C. (1984). Non-existence results and growth properties for harmonic maps and forms. J. Reine Angew. Math. 353: 165–180

    MATH  MathSciNet  Google Scholar 

  18. Kobayashi S. and Nomizu K. (1963). Foundations of Differential Geometry, vol.1. Interscience Publishers, New York

    Google Scholar 

  19. Lemaire L. (1978). Applications harmoniques de surfaces riemanniennes. J. Differ. Geom. 13: 51–78

    MATH  MathSciNet  Google Scholar 

  20. Naito H. (1994). Finite-time blowing-up for the Yang–Mills gradient flow in higher dimensions. Hokkaido Math. J. 23: 451–464

    MATH  MathSciNet  Google Scholar 

  21. Råde J. (1992). On the Yang–Mills heat equation in two and three dimensions. J. Reine Angew. Math. 431: 123–163

    MATH  MathSciNet  Google Scholar 

  22. Schlatter A. (1997). Long time behaviour of the Yang–Mills flow in four dimensions. Anal. Global Anal. Geom. 15: 1–25

    Article  MATH  MathSciNet  Google Scholar 

  23. Schlatter A., Struwe M. and Tavildah-Zadeh A.S. (1998). Global existence of the equivariant Yang–Mills heat flow in four space dimensions. Am. J. Math. 120: 117–128

    Article  MATH  Google Scholar 

  24. Struwe M. (1985). On the evolution of harmonic mappings of Riemannian surfaces. Comment. Math. Helv. 60(4): 558–581

    Article  MATH  MathSciNet  Google Scholar 

  25. Struwe M. (1988). On the evolution of harmonic maps in higher dimensions. J. Differ. Geom. 28(3): 485–502

    MATH  MathSciNet  Google Scholar 

  26. Struwe M. (1994). The Yang–Mills flow in four dimensions. Calc. Var. Partial Differ. Equ. 2: 123–150

    Article  MATH  MathSciNet  Google Scholar 

  27. Struwe, M.: Nonlinear partial differential equations in differential geometry. In: Hardt, R. et al (ed) Lectures from the 2nd Summer Geometry Institute Held in July 1992 at Park City, Utah, USA (IAS/Park City Math. Ser. 2, pp. 257–339). American Mathematical Society, Providence (1996)

  28. Topping P. (2004). Repulsion and quantization in almost-harmonic maps and asymptotics of the harmonic map flow. Annals Math. 159: 465–534

    Article  MATH  MathSciNet  Google Scholar 

  29. Topping, P.: Bubbling of almost-harmonic maps between 2-spheres at points of zero energy density. In: Baird, P. et al (eds.)Variational Problems in Riemannian Geometry: Bubbles, Scans And Geometric Flows. Progress in Nonlinear Differential Equations And Their Applications 59, 33–42 (2004)

  30. van den Berg J.B., Hulshof J. and King J.R. (2003). Formal asymptotics of bubbling in the harmonic map heat flow. SIAM J. Math. Anal. 63: 1682–1717

    Article  MATH  MathSciNet  Google Scholar 

  31. Wilhelmy, L.: Global Equivariant Yang–Mills Connections on the 1 + 4 Dimensional Minkowski Space. Doctoral Dissertation, ETH Zürich (Diss. ETH No. 12155) (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Shatah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grotowski, J.F., Shatah, J. Geometric evolution equations in critical dimensions. Calc. Var. 30, 499–512 (2007). https://doi.org/10.1007/s00526-007-0100-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0100-2

Keywords

Navigation