Skip to main content
Log in

Solutions of perturbed Schrödinger equations with critical nonlinearity

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We consider the perturbed Schrödinger equation

$$\left\{\begin{array}{ll}{- \varepsilon ^2 \Delta u + V(x)u = P(x)|u|^{p - 2} u + k(x)|u|^{2* - 2} u} & {\text{for}}\, x \in {\mathbb{R}}^N\\ \qquad \qquad \quad {u(x) \rightarrow 0} & \text{as}\, {|x| \rightarrow \infty} \end{array} \right.$$

where \(N\geq 3, \ 2^*=2N/(N-2)\) is the Sobolev critical exponent, \(p\in (2, 2^*)\) , P(x) and K(x) are bounded positive functions. Under proper conditions on V we show that it has at least one positive solution provided that \(\varepsilon\leq{\mathcal{E}}\) ; for any \(m\in{\mathbb{N}}\) , it has m pairs of solutions if \(\varepsilon\leq{\mathcal{E}}_{m}\) ; and suppose there exists an orthogonal involution \(\tau:{\mathbb{R}}^{N}\to{\mathbb{R}}^{N}\) such that V(x), P(x) and K(x) are τ -invariant, then it has at least one pair of solutions which change sign exactly once provided that \(\varepsilon\leq{\mathcal{E}}\) , where \({\mathcal{E}}\) and \({\mathcal{E}}_{m}\) are sufficiently small positive numbers. Moreover, these solutions \(u_\varepsilon\to 0\) in \(H^1({\mathbb{R}}^N)\) as \(\varepsilon\to 0\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti A., Badiale M. and Cingolani S. (1997). Semiclassical states of nonlinear Schödinger equations. Arch. Rat. Mech. Anal. 140: 285–300

    Article  MATH  MathSciNet  Google Scholar 

  2. Bartsch T., Pankov A. and Wang Z.Q. (2001). Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3: 549–569

    Article  MATH  MathSciNet  Google Scholar 

  3. Benci V. (1982). On critical point theory of indefinite functionals in the presence of symmetries. Trans. Amer. Math. Soc. 274: 533–572

    Article  MATH  MathSciNet  Google Scholar 

  4. Brézis H. and Nirenberg L. (1983). Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure Appl. Math. 36: 437–477

    Article  MATH  MathSciNet  Google Scholar 

  5. Clapp M. and Ding Y.H. (2003). Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential. Diff. Int. Eqs. 16: 981–992

    MATH  MathSciNet  Google Scholar 

  6. Coti-Zelati V. and Rabinowitz P. (1992). Homoclinic type solutions for a semilinear elliptic PDE on \({\mathbb{R}}^n\). Comm. Pure Appl. Math. 46: 1217–1269

    MathSciNet  Google Scholar 

  7. Ding W.Y. and Ni W.M. (1986). On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rat. Mech. Anal. 91: 283–308

    Article  MATH  MathSciNet  Google Scholar 

  8. Ding Y.H. and Tanaka K. (2003). Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manus. Math. 112: 109–135

    Article  MATH  MathSciNet  Google Scholar 

  9. del Pino M. and Felmer P. (1998). Multipeak bound states of nonlinear Schrödinger equations. Ann. IHP, Analyse Nonlineaire 15: 127–149

    MATH  Google Scholar 

  10. del Pino M. and Felmer P. (2002). Semi-classical states of nonlinear Schrödinger equations: a variational reduction method. Math. Ann. 324: 1–32

    Article  MATH  MathSciNet  Google Scholar 

  11. Felmer P. (1994). Nonexistence and symmetry theorems for elliptic systems in\({\mathbb{R}}^n\). Rend. Circ. Mat. Palermo 43: 259–284

    Article  MATH  MathSciNet  Google Scholar 

  12. Floer A. and Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69: 397–408

    Article  MATH  MathSciNet  Google Scholar 

  13. Grossi M. (2000). Some results on a class of nonlinear Schrödinger equations. Math. Z. 235: 687–705

    Article  MATH  MathSciNet  Google Scholar 

  14. Gui C. (1996). Existence of milti-bump solutions for nonlinear Schrödinger equations via variational method. Comm. Part. Diff. Eqs. 21: 787–820

    Article  MATH  MathSciNet  Google Scholar 

  15. Jeanjean L. and Tanaka K. (2004). Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21: 287–318

    MATH  MathSciNet  Google Scholar 

  16. Kang X. and Wei J. (2000). On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Diff. Eqs. 5: 899–928

    MATH  MathSciNet  Google Scholar 

  17. Li Y.Y. (1997). On singularly perturbed elliptic equation. Adv. Diff. Eqs. 2: 955–980

    MATH  Google Scholar 

  18. Oh Y.G. (1988). Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V)α. Comm. Part. Diff. Eqs. 13: 1499–1519

    Article  MATH  Google Scholar 

  19. Oh Y.G. (1990). On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131: 223–253

    Article  MATH  MathSciNet  Google Scholar 

  20. Pistoia A. (2002). Multi-peak solutions for a class of nonlinear Schödinger equations. NoDEA Nonlinear Diff. Eq. Appl. 9: 69–91

    Article  MATH  MathSciNet  Google Scholar 

  21. Rabinowitz P. (1992). On a class of nonlinear Schrödinger equations. Z. Ang. Math. Phys. 43: 270–291

    Article  MATH  MathSciNet  Google Scholar 

  22. Sirakov B. (2002). Standing wave solutions of the nonlinear Schrödinger equations in \({\mathbb{R}}^n\). Annali di Matematica 183: 73–83

    Article  MathSciNet  Google Scholar 

  23. Wang X. (1993). On concentration of positive bound states of nonlinear Schrödinger equations. Comm. Math. Phys. 153: 229–244

    Article  MATH  MathSciNet  Google Scholar 

  24. Reed M. and Simon B. (1978). Methods of Modern Mathematical Physics, IV Analysis of Operators. Academic, NewYork

    MATH  Google Scholar 

  25. Willem M. (1996). Minimax Theorems. Birkhäuser, Barel

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanghua Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Lin, F. Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. 30, 231–249 (2007). https://doi.org/10.1007/s00526-007-0091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-007-0091-z

Mathematics Subject Classification (2000)

Navigation