Skip to main content
Log in

Bound states for semilinear Schrödinger equations with sign-changing potential

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study the existence and the number of decaying solutions for the semilinear Schrödinger equations \({-\varepsilon^{2}\Delta u + V(x)u = g(x,u)}\), \({\varepsilon > 0}\) small, and \({-\Delta u + \lambda V(x)u = g(x,u)}\), \({\lambda > 0}\) large. The potential V may change sign and g is either asymptotically linear or superlinear (but subcritical) in u as \({|u| \to \infty}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackermann N. (2004). On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248: 423–443

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambrosetti A., Malchiodi A., Secchi S. (2001). Multiplicity results for some nonlinear Schrödinger equations with potentials. Arch. Rat. Mech. Anal. 159: 253–271

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartolo P., Benci V., Fortunato D. (1983). Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity. Nonlin. Anal. 7: 981–1012

    Article  MATH  MathSciNet  Google Scholar 

  4. Bartsch T., Pankov A., Wang Z.Q. (2001). Nonlinear Schrödinger equations with steep potential well. Comm. Contemp. Math. 3: 549–569

    Article  MATH  MathSciNet  Google Scholar 

  5. Bartsch T., Wang Z.Q. (1995). Existence and multiplicity results for some superlinear elliptic problems on \(\mathbf{R}^N\) Comm. PDE 20: 1725–1741

    MATH  MathSciNet  Google Scholar 

  6. Bartsch T., Wang Z.Q. (2000). Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51: 366–384

    Article  MATH  MathSciNet  Google Scholar 

  7. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity (preprint)

  8. Byeon J., Wang Z.Q. (2003). Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. PDE 18: 207–219

    Article  MATH  MathSciNet  Google Scholar 

  9. Chabrowski J., Szulkin A. (2005). On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Top. Meth. Nonl. Anal. 25: 3–21

    MATH  MathSciNet  Google Scholar 

  10. del Pino M., Felmer P. (1996). Local mountain passes for semilinear problems in unbounded domains. Calc. Var. PDE 4: 121–137

    MATH  MathSciNet  Google Scholar 

  11. Ding Y.H., Lee C. (2006). Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms. J. Diff. Eq. 222: 137–163

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding, Y.H., Szulkin, A.: Existence and number of solutions for a class of semilinear Schrödinger equations. In: Cazenave, T., et al. (eds.) Contributions to Nonlinear Analysis. A tribute to D.G. de Figueiredo on the Occasion of his 70th Birthday, pp. 221–231. Birkhäuser, Basel (2006)

  13. Felmer P., Torres J.J. (2002). Semi-classical limit for the one dimensional nonlinear Schrödinger equation. Comm. Contemp. Math. 4: 481–512

    Article  MATH  MathSciNet  Google Scholar 

  14. Floer A., Weinstein A. (1986). Nonspreading wave packets for the cubic Schrödinger equation with a bounded potential. J. Func. Anal. 69: 397–408

    Article  MATH  MathSciNet  Google Scholar 

  15. Jeanjean L., Tanaka K. (2004). Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. PDE 21: 287–318

    MATH  MathSciNet  Google Scholar 

  16. Lions P.L. (1984). The concentration–compactness principle in the calculus of variations. The locally compact case. Part I. Ann. IHP, Analyse Non Linéaire 1: 109–145

    MATH  Google Scholar 

  17. Liu Z.L., van Heerden F.A., Wang Z.Q. (2005). Nodal type bound states of Schrödinger equations via invariant set and minimax methods. J. Diff. Eq. 214: 358–390

    Article  MATH  Google Scholar 

  18. Oh Y.G. (1988). Existence of semiclassical bound states of nonlinear Schrödinger equations with potentials of the class (V) a . Comm. PDE 13: 1499–1519

    Article  MATH  Google Scholar 

  19. Oh Y.G. (1990). On positive multi-lump bound states of nonlinear Schrödinger equations under multiple well potential. Comm. Math. Phys. 131: 223–253

    Article  MATH  MathSciNet  Google Scholar 

  20. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS 65, American Mathematical Society, Providence, R.I. (1986)

  21. Rabinowitz P.H. (1992). On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43: 270–291

    Article  MATH  MathSciNet  Google Scholar 

  22. Willem M. (1995). Analyse Harmonique Réelle. Hermann, Paris

    MATH  Google Scholar 

  23. Willem M. (1996). Minimax Theorems. Birkhäuser, Boston

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Szulkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Szulkin, A. Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. 29, 397–419 (2007). https://doi.org/10.1007/s00526-006-0071-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0071-8

Keywords

Navigation