Skip to main content
Log in

Traveling wave solutions of harmonic heat flow

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We prove the existence of a traveling wave solution of the equation \( u_t=\Delta u+|\nabla u|^2u \) in an infinitely long cylinder of radius R, which connects two locally stable and axially symmetric steady states at x 3 = ±∞. Here u is a director field with values in \( {\mathbb{S}}^2 \subset {\mathbb{R}}^3 : |u|=1 \) The traveling wave has a singular point on the cylinder axis. Letting R→ ∞ we obtain a traveling wave defined in all space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berestycki, H., Nirenberg, L.: Traveling fronts in cylinders, Annales de l'Institut Henri Poincaré. Anal. non linéaire 9, 497–572 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Bertsch, M., Primi, I.: Traveling wave solutions of the heat flow of director fields. Preprint (2005)

  3. Bertsch, M., Primi, I.: Non uniqueness of the traveling wave speed for harmonic heat flow. Preprint (2005)

  4. Bertsch, M., Dal Passo, R., Pisante, A.: Point singularities and nonuniqueness for the heat flow for harmonic maps. Communications in Partial Differential Equations 28, 1135–1160 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertsch, M., Dal Passo, R., Van der Hout, R.: Nonuniqueness for the heat flow of harmonic maps on the disk. Arch. Rat. Mech. Anal. 161(2), 93–112 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertsch, M., Podio-Guidugli, P., Valente, V.: On the dynamics of deformable ferromagnets. I. Global weak solutions for soft ferromagnets at rest. Ann. di Mat. Pura e Appl. CLXXIX, 331–360 (2001)

    Article  MathSciNet  Google Scholar 

  7. Bethuel, F., Brezis, H., Coron, J.M.: Relaxed energies for harmonic maps. Variational Methods (Paris 1988) Progress in Nonlinear Differential Equations and their Applications, vol. 4, pp. 37–52. Birkhäuser Boston, Boston (1990)

  8. Chang, K.-C., Ding, W.-Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Diff. Geom. 36(2), 507–515 (1992)

    MATH  MathSciNet  Google Scholar 

  9. Gardner, R., Existence of multidimensional traveling wave solutions of an initial-boundary value problem. J. Differ. Eqs. 61, 335–379 (1986)

    Article  MATH  Google Scholar 

  10. Grotowski, J.F.: Harmonic map heat flow for axially symmetric data. Manuscripta Math. 73, 207–228 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Grotowski, J.F.: Concentrated boundary data and axially symmetric harmonic maps. J. Geom. Anal. 3(3), 279–292 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hamilton, R.S.: Harmonic maps of manifolds with boundary. Lecture Notes 471, Berlin-Heidelberg-New York, Springer (1975)

    Google Scholar 

  13. Hardt, R., Lin, F.H., Poon, C.C.: Axially symmetric harmonic maps minimizing a relaxed energy. Commun. Pure and Appl. Math. 14, 417–459 (1992)

    Article  MathSciNet  Google Scholar 

  14. Heinze, S.: A variational approach to traveling waves. Preprint No. 85/2001, Max Planck Institute for Mathematics in the Sciences, Leipzig (2001)

    Google Scholar 

  15. Jost, J.: Harmonic mappings between Riemannian manifolds. In: Proceedings of the Centre Math. Analysis, Canberra, Australian National University Press (1983)

  16. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE, Lecture Notes in Mathematics 1150 Berlin-Heidelberg-New York, Springer-Verlag (1985)

    Google Scholar 

  17. Ladyzhenskaya, O. A., Ural'tseva, N.N.: Linear and Quasilinear Elliptic Equations, New York, Academic Press (1968)

    MATH  Google Scholar 

  18. Lucia, M., Muratov, C.B., Novaga, M.: Existence of traveling wave solutions for Ginzburg-Landau-type problems in infinite cylinders. CVGMT Preprint, Scuola Normal Superiore, Pisa (2004)

    Google Scholar 

  19. Lucia, M., Muratov, C.B., Novaga, M.: Linear vs. nonlinear selection for the propagation speed of the solutions of scalar reaction-diffusion equations invading an unstable equilibrium. Commun. Pure Appl. Math. 57, 616–636 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Muratov, C.B.: A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type. Discrete Cont. Dyn. S., Ser. B 4, 867–892 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matano, H.: Nonincrease of the lap-number of a solution for a one-dimensional semilinear parabolic equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(2), 401–441 (1982)

    MATH  MathSciNet  Google Scholar 

  22. Pisante, A.: Reverse bubbling of currents and harmonic heat flows with prescribed singular set. Calculus of Variations and Partial Differential Equations 19(4), 337–378 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Primi, I.: Traveling Waves of Director Fields. Ph.d. thesis, University of Rome “La Sapienza” (2005)

  24. Struwe, M.: Geometric evolution problems, Nonlinear partial differential equations in differential geometry (Park City, UT, 1992), 257–339. IAS/Park City Math. Ser., 2, AMS, Providence (1996)

  25. Topping, P.: Reverse bubbling and nonuniqueness in the harmonic map flow. Int. Math. Res. Notices 10, 505–520 (2002)

    Article  MathSciNet  Google Scholar 

  26. Van der Hout, R.: Flow alignment in nematic liquid crystals in flows with cylindrical symmetry. Differ. Integral Equat. 14(2), 189–211 (2001)

    MATH  MathSciNet  Google Scholar 

  27. Vega, J.M.: Travelling wavefronts of reaction-diffusion equations in cylindrical domains. Comm. Partial Differ. Equat. 18, 505–531 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Volpert, A.I., Volpert, V.A., Volpert, V.A.: Traveling Wave Solutions of Parabolic Systems. AMS, Providence (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bertsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsch, M., Muratov, C.B. & Primi, I. Traveling wave solutions of harmonic heat flow. Calc. Var. 26, 489–509 (2006). https://doi.org/10.1007/s00526-006-0016-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0016-2

Keywords

Navigation