Bernstein type theorems with flat normal bundle

  • Knut SmoczykEmail author
  • Guofang Wang
  • Y. L. Xin


We prove Bernstein type theorems for minimal n-submanifolds in ℝn+p with flat normal bundle. Those are natural generalizations of the corresponding results of Ecker-Huisken and Schoen-Simon-Yau for minimal hypersurfaces.


System Theory Natural Generalization Normal Bundle Type Theorem Minimal Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cheng, S.Y., Li, P., Yau, S.-T.: Heat equations on minimal submanifolds and their applications. Amer. J. Math. 106(5), 1033–1065 (1984)MathSciNetGoogle Scholar
  2. 2.
    Ecker, K., Huisken, G.: A Bernstein result for minimal graphs of controlled growth. J. Differential Geom. 31(2), 397–400 (1990)MathSciNetGoogle Scholar
  3. 3.
    Fischer-Colbrie, D.: Some rigidity theorems for minimal submanifolds of the sphere. Acta Math. 145(1–2), 29–46 (1980)Google Scholar
  4. 4.
    Fischer-Colbrie, D., Schoen, R.: The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33(2), 199–211 (1980)MathSciNetGoogle Scholar
  5. 5.
    Hildebrandt, S., Jost, J., Widman, K.-O.: Harmonic mappings and minimal submanifolds. Invent. Math. 62(2), 269–298 (1980/81)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hoffman, D.A., Osserman, R., Schoen, R.: On the Gauss map of complete surfaces of constant mean curvature in R3 and R4. Comment. Math. Helv. 57(4), 519–531 (1982)MathSciNetGoogle Scholar
  7. 7.
    Hsiang, W.-Y., Palais, R.S., Terng, C.-L.: The topology of isoparametric submanifolds. J. Differential Geom. 27(3), 423–460 (1988)MathSciNetGoogle Scholar
  8. 8.
    Jost, J., Xin, Y.L.: Bernstein type theorems for higher codimension. Calc. Var. Partial Differential Equations 9(4), 277–296 (1999)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lawson, Jr. H.B., Osserman, R.: Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system. Acta Math. 139(1–2), 1–17 (1977)Google Scholar
  10. 10.
    Ni, L.: Gap theorems for minimal submanifolds in \({\bf R}\sp {n+1}\). Comm. Anal. Geom. 9(3), 641–656 (2001)MathSciNetGoogle Scholar
  11. 11.
    Nitsche, J.C.C.: Lectures on minimal surfaces. Vol. 1. Cambridge University Press, Cambridge, 1989. Introduction, fundamentals, geometry and basic boundary value problems, Translated from the German by Jerry M. Feinberg, With a German forewordGoogle Scholar
  12. 12.
    Simons, J.: Minimal varieties in riemannian manifolds. Ann. of Math. (2) 88, 62–105 (1968)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Schoen, R., Simon, L., Yau, S.T.: Curvature estimates for minimal hypersurfaces. Acta Math. 134(3–4), 275–288 (1975)MathSciNetGoogle Scholar
  14. 14.
    Smoczyk, K., Wang, G., Xin, Y.L.: Mean curvature flow with flat normal bundles. arXiv:math.DG/0411010, v1 Oct. 31, 2004Google Scholar
  15. 15.
    Terng, C.-L.: Isoparametric submanifolds and their Coxeter groups. J. Differential Geom. 21(1), 79–107 (1985)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Terng, C.-L.: Convexity theorem for isoparametric submanifolds. Invent. Math. 85(3), 487–492 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Terng, C.-L.: Submanifolds with flat normal bundle. Math. Ann. 277(1), 95–111 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wang, M.-T.: On graphic Bernstein type results in higher codimension. Trans. Amer. Math. Soc. 355(1), 265–271 (electronic), (2003)Google Scholar
  19. 19.
    Wang, M.-T.: Stability and curvature estimates for minimal graphs with flat normal bundles, arXiv:math.DG/0411169, v1 Nov. 8 and v2 Nov. 11, 2004Google Scholar
  20. 20.
    Xin, Y.L.: Bernstein type theorems without graphic condition. preprint 2003, to appear in Asian J. Math.Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Max Planck Institute for Mathematics in the Sciences Inselstr. 22-26LeipzigGermany
  2. 2.Institute of MathematicsFudan University Shanghai, China and Max Planck Institute for Mathematics in the Sciences Inselstr. 22-26LeipzigGermany
  3. 3.Institute of Mathematics Fudan UniversityShanghaiChina

Personalised recommendations