Skip to main content
Log in

Blow-up of solutions to a nonlinear dispersive rod equation

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper, firstly we find the best constant for a convolution problem on the unit circle via a variational method. Then we apply the best constant on a nonlinear rod equation to give sufficient conditions on the initial data, which guarantee finite time singularity formation for the corresponding solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272(1220), 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  2. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons, Phys. Rev. Letter. 71, 1661–1664 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Constantin, A.: On the Cauchy problem for the periodic Camassa-Holm equation. J. Differential Equations 141(2), 218–235 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50(2), 321–362 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Escher, J.: Well-posedness, global existence and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math. 51, 475–504 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations, Acta Math. 181, 229–243 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Comm. Math. Phys. 211(1), 45–61 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., McKean, H.P.: A shallow water equation on the circle. Comm. Pure Appl. Math. 52(8), 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A., Strauss, W.: Stability of peakons, Comm. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Strauss, W.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270(3–4), 140–148 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Dai, H.-H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech. 127(1–4), 193–207 (1998)

    Google Scholar 

  12. Dai, H.-H., Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 456(1994), 331–363 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Fuchssteiner, B., Fokas, A.S.: Symplectic structures, their Backlund transformations and hereditary symmetries. Phys. D 4(1), 47–66 (1981/82)

    MathSciNet  Google Scholar 

  14. Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    MathSciNet  MATH  Google Scholar 

  15. Johnson, R.S.: Camassa-Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato, T.: Quasi-linear equations of evolution, with applications to partial differential equations. Spectral theory and differential equations (Proc. Sympos., Dundee, 1974; dedicated to Konrad Jorgens), pp. 25–70. Lecture Notes in Math., Vol. 448, Springer, Berlin (1975)

  17. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinear dispersive model wave equation, J. Differential Equations 162, 27–63 (2000)

    MathSciNet  MATH  Google Scholar 

  18. McKean, H.P.: Breakdown of a shallow water equation, Asian J. Math. 2(4), 867–874 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Misioł ek, G.: Classical solutions of the periodic Camassa-Holm equation. Geom. Funct. Anal. 12(5), 1080–1104 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Molinet, L.: On well-posedness results for Camassa-Holm equation on the line: a survey. J. Nonlinear Math. Phys. 11(4), 521–533 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Seliger, R.: A note on the breaking of waves. Proc. Roy. Soc. Lond Ser. A. 303, 493–496 (1968)

    MATH  Google Scholar 

  22. Shkoller, S.: Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics, J. Funct. Anal. 160(1), 337–365 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Struwe, M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Second edition. Results in Mathematics and Related Areas (3), 34. Springer-Verlag, Berlin (1996)

  24. Xin, Z., Zhang, P.: On the weak solution to a shallow water equation, Comm. Pure Appl. Math. 53, 1411–1433 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Xin, Z., Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. Partial Differential Equations 27(9–10), 1815–1844 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290, 591–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhou, Y.: Stability of solitary waves for a rod equation. Chaos Solitons & Fractals 21(4), 977–981 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhou, Y.: Well-posedness and blow-up criteria of solutions for a rod equation. Math. Nachr. 278, 1726–1739 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Zhou, Y.: Blow-up phenomenon for a periodic rod equation. Submitted (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Mathematics Subject Classification (2000) 30C70, 37L05, 35Q58, 58E35

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y. Blow-up of solutions to a nonlinear dispersive rod equation. Calc. Var. 25, 63–77 (2006). https://doi.org/10.1007/s00526-005-0358-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0358-1

Keywords

Navigation