Skip to main content
Log in

Abstract

Motivated by a question of Brezis and Marcus, we show that the Lp–Hardy inequality involving the distance to the boundary of a convex domain, can be improved by adding an Lq norm qp, with a constant depending on the interior diameter of Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbatis, G., Filippas S., Tertikas, A.: A unified approach to improved Lp Hardy inequalities with best constants. Trans. Amer. Math. Soc. 356(6), 2169–2196 (2004)

    Article  MathSciNet  Google Scholar 

  2. Brezis, H., Marcus, M.: Hardyapos; inequalities revisited. Ann. Scuola Norm. Pisa 25, 217–237 (1997)

    MathSciNet  Google Scholar 

  3. Brezis, H., Vázquez, J.-L.: Blow-up solutions of some nonlinear elliptic problems. Rev. Mat. Univ. Comp. Madrid 10, 443–469 (1997)

    Google Scholar 

  4. Cabré, X., Martel, Y.: Existence versus instantaneous blowup for linear heat equations with singular potentials. C.R. Acad. Sci. Paris Ser. I Math. 329, 973–978 (1999)

    MathSciNet  Google Scholar 

  5. Dávila, J., Dupaigne, L.: Hardy-type inequalities. J. Eur. Math. Soc. 6(3), 335–365 (2004)

    MathSciNet  Google Scholar 

  6. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Studies in Advanced Math., CRC Press (1992)

  7. Filippas, S., Mazapos;a, V., Tertikas, A.: A sharp Hardy Sobolev inequality. C. R. Acad. Paris Ser. I, 339, 483–486 (2004)

    Google Scholar 

  8. Filippas, S., Mazapos;a, V., Tertikas, A: Critical Hardy Sobolev Inequalities. (In preparation)

  9. Filippas, S., Tertikas, A.: Optimizing Improved Hardy inequalities. J. Funct. Anal. 192, 186–233 (2002)

    Article  MathSciNet  Google Scholar 

  10. Garcia, J.P., Peral, I.: Hardy inequalities and some critical elliptic and parabolic problems. J. Diff. Equations 144, 441–476 (1998)

    Google Scholar 

  11. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A.: A geometrical version of Hardyapos; inequality. J. Funct. Anal. 189, 539–548 (2002)

    Article  MathSciNet  Google Scholar 

  12. Mazapos;a, V.: Sobolev spaces. Springer (1985)

  13. Pólya, G., Szegö, G.: Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, N.J. (1951)

  14. Peral, I., Vázquez, J.L.: On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term. Arch. Rational Mech. Anal. 129, 201–224 (1995)

    Article  MathSciNet  Google Scholar 

  15. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press (1970)

  16. Tidblom, J.: A geometrical version of Hardyapos; inequality for W1,p0(Ω), Proc. Amer. Math. Soc. 132(8), 2265–2271 (2004)

    MATH  MathSciNet  Google Scholar 

  17. Vázquez, J.L., Zuazua, E.: The Hardy Inequality and the Asymptotic Behaviour of the Heat Equation with an Inverse-Square Potential, J. Funct. Anal. 173, 103–153 (2000)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippas, S., Maz'ya, V. & Tertikas, A. On a question of Brezis and Marcus. Calc. Var. 25, 491–501 (2006). https://doi.org/10.1007/s00526-005-0353-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0353-6

Keywords

Navigation