Skip to main content
Log in

Global curvature for surfaces and area minimization under a thickness constraint

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

Motivated by previous work on elastic rods with self-contact, involving the concept of the global radius of curvature for curves (as defined by Gonzalez and Maddocks), we define the global radius of curvature Δ[X] for a wide class of continuous parametric surfaces X for which the tangent plane exists on a dense set of parameters. It turns out that in this class of surfaces a positive lower bound Δ[X] ≥ θ > 0 provides, naively speaking, the surface with a thickness of magnitude θ; it serves as an excluded volume constraint for X, prevents self-intersections, and implies that the image of X is an embedded C1-manifold with a Lipschitz continuous normal. We also obtain a convergence and a compactness result for such thick surfaces, and show one possible application to variational problems for embedded objects: the existence of ideal surfaces of fixed genus in each isotopy class.

The proofs are based on a mixture of elementary topological, geometric and analytic arguments, combined with a notion of the reach of a set, introduced by Federer in 1959.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, M., Katsuda, A., Kurylev, Y., Lassas, M., Taylor, M.: Boundary regularity for the Ricci equation, geometric convergence, and Gelfand' inverse boundary problem. Inv. Math. 58, 261–321 (2004)

    MathSciNet  Google Scholar 

  2. Banavar, J.R., Gonzalez, O., Maddocks, J.H., Maritan, A.: Self-interactions of strands and sheets. J. Statist. Phys. 110, 35–50 (2003)

    Article  MathSciNet  Google Scholar 

  3. Banavar, J.R., Maritan, A., Micheletti, C., Trovato, A.: Geometry and physics of proteins. Proteins 47, 315–322 (2002)

    Article  Google Scholar 

  4. Berger, M.: A panoramic view of Riemannian geometry. Springer-Verlag, Berlin (2003)

    Google Scholar 

  5. Bonk, M., Lang, U.: Bi-Lipschitz parameterization of surfaces. Math. Annalen 327, 135–169 (2003)

    Article  MathSciNet  Google Scholar 

  6. Dierkes, U., Hildebrandt, S., Küster, A., Wohlrab, O.: Minimal Surfaces I, II. Grundlehren math. Wiss. 295 & 296, Springer Berlin (1992)

  7. do Carmo, M.P.: Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1976)

  8. Dubrovin, B.A., Fomenko, A.T., Novikov, S.P.: Modern geometry—methods and applications. Part II. The geometry and topology of manifolds. Graduate Texts in Mathematics, 104. Springer-Verlag, New York (1985)

    Google Scholar 

  9. Durumeric, O.C.: Thickness formula and C1 compactness for C1,1 Riemannian submanifolds. ArXiv: math.DG/0204050 (2002)

  10. Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418–491 (1959)

    MATH  MathSciNet  Google Scholar 

  11. Freedman, M.H., Zheng-Xu, He., Zhenghan, W.: Möbius energy of knots and unknots. Ann. of Math. (2) 139, 1–50 (1994)

    MathSciNet  Google Scholar 

  12. Fu, J.H.G.: Bi-Lipschitz rough normal coordinates for surfaces with an L1 curvature bound. Indiana Univ. Math. J. 47, 439–453 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order. Second edition. Grundlehren der math. Wiss. 224, Springer Berlin (1983)

  14. Gonzalez, O., Maddocks, J.H.: Global Curvature, Thickness, and the Ideal Shape of Knots. The Proceedings of the National Academy of Sciences, USA 96(9), 4769–4773 (1999)

    Google Scholar 

  15. Gonzalez, O., Maddocks, J.H., Schuricht, F., von der Mosel, H.: Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differential Equations 14, 29–68 (2002)

    Article  MathSciNet  Google Scholar 

  16. Hazewinkel, M.: (ed.) Encyclopaedia of mathematics. Kluwer, Dodrecht (1990)

    Google Scholar 

  17. He, Zheng-Xu.: The Euler-Lagrange equation and heat flow for the Möbius energy. Comm. Pure Appl. Math. 53, 399–431 (2000)

    MathSciNet  Google Scholar 

  18. Kusner, R.B., Sullivan, J.M.: Möbius-invariant knot energies. Ideal knots, 315–352, Ser. Knots Everything, 19, World Sci. Publishing, River Edge, NJ (1998)

  19. Léger, J.C.: Menger curvature and rectifiability. Ann. of Math. (2) 149, 831–869 (1999)

    MATH  MathSciNet  Google Scholar 

  20. Lima, Elon L.: Orientability of smooth hypersurfaces and the Jordan–Brouwer separation theorem. Expo. Math. 5, 283–286 (1987)

    MATH  MathSciNet  Google Scholar 

  21. Malý, J.: Absolutely continuous functions of several variables. J. Math. Anal. Appl. 231(2), 492–508 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Milnor, J.W.: On the total curvature of knots. Ann. of Math. 52, 248–257 (1950)

    MATH  MathSciNet  Google Scholar 

  23. Müller, S., Šverák, V.: On surfaces of finite total curvature. J. Differential Geom. 42, 229–258 (1995)

    MathSciNet  Google Scholar 

  24. Norton, A.: A critical set with nonnull image has large Hausdorff dimension. Trans. Amer. Math. Soc. 296, 367–376 (1986)

    MATH  MathSciNet  Google Scholar 

  25. O'ara, J.: Energy of a knot. Topology 30, 241–247 (1991)

    MathSciNet  Google Scholar 

  26. Schuricht, F., von der Mosel, H.: Global curvature for rectifiable loops. Math. Z. 243, 37–77 (2003)

    Article  MathSciNet  Google Scholar 

  27. Schuricht, F., von der Mosel, H.: Euler-Lagrange equations for nonlinearly elastic rods with self-contact. Arch. Rat. Mech. Anal. 168, 35–82 (2003)

    Article  MathSciNet  Google Scholar 

  28. Schuricht, F., von der Mosel, H.: Characterization of ideal knots. Calc. Var. Partial Differential Equations 19, 281–305 (2004)

    Article  MathSciNet  Google Scholar 

  29. Seifert, U.: Fluid membranes — theory of vesicle conformations. Ber. For-schungs-zent-rum Jülich 2997 (1994)

  30. Semmes, S.: Hypersurfaces in Rn whose normal has small BMO norm. Proc. Amer. Math. Soc. 112, 403–412 (1991)

    MATH  MathSciNet  Google Scholar 

  31. Strzelecki, P., von der Mosel, H.: On a Mathematical Model for Thick Surfaces. Physical and Numerical Models in Knot Theory, 547–564, Ser. Knot Everything, 36, World Scientific, Singapore 2005

  32. Toro, T.: Surfaces with generalized second fundamental form in L2 are Lipschitz manifolds. J. Differential Geom. 39, 65–101 (1994)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko von der Mosel.

Additional information

Mathematics Subject Classification (2000) 49Q10, 53A05, 53C45, 57R52, 74K15

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strzelecki, P., Mosel, H.v.d. Global curvature for surfaces and area minimization under a thickness constraint. Calc. Var. 25, 431–467 (2006). https://doi.org/10.1007/s00526-005-0334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-005-0334-9

Keywords

Navigation