Skip to main content
Log in

Economically optimized heat exchanger design: a synergistic approach using differential evolution and equilibrium optimizer within an evolutionary algorithm framework

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This study introduces the CP-EODE algorithm, a novel hybrid of the Equilibrium Optimizer (EO), and the Differential Evolution (DE) algorithm. It addresses EO’s tendency toward premature convergence by enhancing its exploration capabilities. The motivation for this research stems from the need for more efficient and economically viable designs in engineering, particularly in the optimization of shell-and-tube heat exchangers (STHEs) and photovoltaic module parameters. The CP-EODE algorithm leverages DE's exploration strengths to enhance EO’s performance adopting a cooperative parallel approach that divides the population into EO and DE sub-populations for a more effective search space exploration. The validation of CP-EODE’s effectiveness commenced with its application to 29 benchmark functions, where a Friedman test yielded an \({F}_{r}\) value of 22.19, significantly surpassing the critical value of 7.81, and a Wilcoxon signed rank test confirmed statistical improvements with a z-score beyond − 1.96. Four quality metrics were discussed to provide a detailed assessment of CP-EODE’s performance highlighting its robust exploration and exploitation capabilities. In practical applications, CP-EODE demonstrated significant advancements in STHE design achieving up to 19.706% reduction in heat exchanger surface area compared to traditional and other algorithmic designs, showcasing its potential to enhance engineering design efficiency and cost-effectiveness. A critical examination of the algorithm's convergence rate revealed its swift optimization capability, with rapid attainment of optimal solutions in various test cases, further establishing CP-EODE’s advantage in handling complex optimization challenges. Through rigorous statistical analysis and performance metrics, CP-EODE emerges as a superior solution for complex optimization challenges, underscoring the value of hybrid algorithmic strategies in engineering optimizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Abbreviations

\({a}_{1}\) :

Constant (numeric)

\({a}_{2}\) :

Constant (numeric)

\({a}_{3}\) :

Constant (numeric)

\(B\) :

Spacing between baffle (\({\text{m}}\))

\({\text{Cl}}\) :

Clearance (\({\text{m}}\))

\({C}_{p}\) :

Specific heat (\({\text{kJ}}/\mathrm{kg K}\))

\({C}_{i}\) :

Capital cost (€)

\({C}_{{\text{E}}}\) :

Cost of energy (€\(/\mathrm{kW h}\))

\({C}_{{\text{o}}}\) :

Operating cost per year (€\(/{\text{year}}\))

\({C}_{{\text{D}}}\) :

Total discounted operating cost (€)

\({C}_{{\text{tt}}}\) :

Total cost per year (€)

\(d\) :

Diameter of tube(\({\text{m}}\))

\(D\) :

Diameter of shell (\({\text{m}}\))

\(f\) :

Friction factor

\({F}_{{\text{c}}}\) :

Correction factor

\(h\) :

Heat transfer coefficient (\({\text{W}}/{\text{m}}^{2} \;{\text{K}}\))

\(H\) :

Operating time per year (\({\text{h}}/{\text{year}}\))

\(i\) :

Discount rate per year (%)

\(k\) :

Thermal conductivity (\({\text{W}}/{\text{m }}\;{\text{K}}\))

\({K}_{1}\) :

Constant (numeric)

\(L\) :

Length of tubes (\({\text{m}}\))

\(m\) :

Flow rate of mass (\({\text{kg}}/{\text{s}}\))

\(n\) :

Number of tube passages

\(n1\) :

Numerical constant

\({\text{yy}}\) :

Life of equipment \(({\text{year}})\)

\({N}_{{\text{t}}}\) :

Number of tubes

\(P\) :

Pumping power (\({\text{W}}\))

\({P}_{{\text{r}}}\) :

Prandtle number

\({P}_{{\text{t}}}\) :

Tube pitch (\({\text{m}}\))

\(Q\) :

Heat duty (\({\text{W}}\))

\({\text{Re}}\) :

Reynolds number

\({R}_{{\text{f}}}\) :

Resistance of fouling (\({\text{m}}^{{2{ }}} \;{\text{K}}/{\text{W}}\))

\(S\) :

Surface area of heat transfer \({({\text{m}}}^{2 })\)

\(T\) :

Temperature \((\mathrm{ K})\)

\(U\) :

Overall heat transfer coefficient \(\left( {{\text{W}}/{\text{m}}^{2} \;{\text{K}}} \right)\)

\(v\) :

Velocity of fluid \(({\text{m}}/{\text{s}})\)

\(\Delta P\) :

Pressure drop \(({\text{Pa}})\)

\(\Delta {T}_{{\text{LM}}}\) :

Logarithmic mean temperature difference (°C)

\({\mu }_{t}\) :

Dynamic viscosity \(\left( {{\text{Pa}}\;{\text{ s}}} \right)\)

\(\rho\) :

Density \(\left( {{\text{Kg}}/{\text{m}}^{3} } \right)\)

\(\eta\) :

Overall pumping efficiency

\({\text{i}}\) :

Inlet

\({\text{o}}\) :

Outlet

\({\text{s}}\) :

Used for shell

\({\text{t}}\) :

Used for tube

\({\text{w}}\) :

Wall of tube

References

  1. Dhavle SV, Kulkarni AJ, Shastri A, Kale IR (2018) Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Comput & Applic 30:111–125. https://doi.org/10.1007/s00521-016-2683-z

    Article  Google Scholar 

  2. Sinnott R, Towler G (2005) Chemical engineering design. Elsevier, Netherlands

    Google Scholar 

  3. Segundo E, Amoroso AL, Mariani VC, Coelho L (2017) Economic optimization design for shell-and-tube heat exchangers by a Tsallis differential evolution. Appl Therm Eng 111:143–151. https://doi.org/10.1016/j.applthermaleng.2016.09.032

    Article  Google Scholar 

  4. Abdelhamid H, Bakry AI, Mohamad HA (2022) A review on comparative performance of shell-and-tube heat exchangers with various design configurations. J Eng Res (ERJ) 6:159–168. https://doi.org/10.21608/erjeng.2022.159615.1094

    Article  Google Scholar 

  5. Kern DQ (1950) Process heat transfer. Mc Graw-Hill, New York

    Google Scholar 

  6. Hewitt GF (2008) Heat exchanger design handbook. Begell House, New York

    Google Scholar 

  7. Shah RK, Bell KJ (2000) Handbook of thermal engineering. CRC Press, Cambridge

    Google Scholar 

  8. Poddar TK, Polley GT (1996) Heat exchanger design through parameter plotting. Chem Eng Res design 74:849–852. https://doi.org/10.1205/026387696523139

    Article  Google Scholar 

  9. Caputo AC, Pelagagge PM, Salini P (2008) Heat exchanger design based on economic optimization. Appl Therm Eng 28:1151–1159. https://doi.org/10.1016/j.applthermaleng.2007.08.010

    Article  Google Scholar 

  10. Patel VK, Rao RV (2010) Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique. Appl Therm Eng 30:1417–1425. https://doi.org/10.1016/j.applthermaleng.2010.03.001

    Article  Google Scholar 

  11. Sahin AS, Kilic B, Kilic U (2011) Design and economic optimization of shell and tube heat exchangers using artificial bee colony (ABC) algorithm. Energy Conv Manag 52:3356–3362. https://doi.org/10.1016/j.enconman.2011.07.003

    Article  Google Scholar 

  12. Hadidi A, Nazari A (2013) Design and economic optimization of shell-and-tube heat exchangers using biogeography-based (BBO) algorithm. Appl Therm Eng 51:1263–1272. https://doi.org/10.1016/j.applthermaleng.2012.12.002

    Article  Google Scholar 

  13. Holland JH (1992) Genetic algorithms. Sci Am 267:66–72. https://doi.org/10.1038/scientificamerican0792-66

    Article  Google Scholar 

  14. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. MHS'95. Proc. of the 6th Int. Symp. on Micro Machine and Human Sci., Japan. https://doi.org/10.1109/MHS.1995.494215

  15. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214:108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  Google Scholar 

  16. Agarwal A, Gupta SK (2008) Jumping gene adaptations of NSGA-II and their use in the multiobjective optimal design of shell and tube heat exchangers. Chem Eng Res and Design 86:123–139. https://doi.org/10.1016/j.cherd.2007.11.005

    Article  Google Scholar 

  17. Lara-M OD, Gómez-C FI (2019) Optimization of a shell-and-tube heat exchanger using the grey wolf algorithm. Comput Aided Chem Eng 46:571–576. https://doi.org/10.1016/B978-0-12-818634-3.50096-5

    Article  Google Scholar 

  18. Asadi M, Song Y, Sunden B, Xie G (2014) Economic optimization design of shell-and-tube heat exchangers by a cuckoo-search-algorithm. Appl Therm Eng 73:1032–1040. https://doi.org/10.1016/j.applthermaleng.2014.08.061

    Article  Google Scholar 

  19. Rao RV, Saroj A (2017) Constrained economic optimization of shell-and-tube heat exchangers using elitist-Jaya algorithm. Energy 128:785–800. https://doi.org/10.1016/j.energy.2017.04.059

    Article  Google Scholar 

  20. Fettaka S, Thibault J, Gupta Y (2013) Design of shell-and-tube heat exchangers using multiobjective optimization. Int J Heat Mass Transf 60:343–354. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.047

    Article  Google Scholar 

  21. Saldanha WH, Soares GL, Machado-Coelho TM, Diniz dos Santos E, Ekel PI (2017) Choosing the best evolutionary algorithm to optimize the multiobjective shell-and-tube heat exchanger design problem using PROMETHEE. Appl Therm Eng 127:1049–1061. https://doi.org/10.1016/j.applthermaleng.2017.08.052

    Article  Google Scholar 

  22. Sai JP, Rao BN (2022) Non-dominated sorting genetic algorithm II and particle swarm optimization for design optimization of shell and tube heat exchanger. Int Commun Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2022.105896

    Article  Google Scholar 

  23. Caputo AC, Federici A, Pelagagge PM, Salini P (2022) On the selection of design methodology for shell-and-tube heat exchangers optimization problems. Therm Sci and Eng Progress. https://doi.org/10.1016/j.tsep.2022.101384

    Article  Google Scholar 

  24. Biswas A, Mishra KK, Tiwari S, Misra AK (2013) Physics inspired optimization algorithms: a survey. J Optim. https://doi.org/10.1155/2013/438152

    Article  Google Scholar 

  25. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  26. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  Google Scholar 

  27. Awad NH, Ali MZ, Suganthan PN, Liang JJ, Qu BY (2017) Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. IEEE Congr. Evol. Comput

  28. Reilly PM (1978) Probability and statistics for engineers and scientists, Macmillan Publishing Co., Inc., New York, 1978. Can J Stat. https://doi.org/10.2307/3315054

    Article  Google Scholar 

  29. Taal M, Bulatov I, Klemes J, Stehlik P (2003) Cost estimation and energy price forecasts for economic evaluation of retrofit projects. Appl Therm Eng 23:1819–1835. https://doi.org/10.1016/S1359-4311(03)00136-4

    Article  Google Scholar 

  30. Rauf HT, Bangyal WHK, Lali MI (2021) An adaptive hybrid differential evolution algorithm for continuous optimization and classification problems. Neural Comput Appl 33:10841–10867. https://doi.org/10.1007/s00521-021-06216-y

    Article  Google Scholar 

  31. Xin B, Chen J, Zhang J, Fang H, Peng Z-H (2012) Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Trans Syst, Man, and Cybern, Part C (Appl Rev) 42(5):744–767. https://doi.org/10.1109/TSMCC.2011.2160941

    Article  Google Scholar 

  32. Talbi E (2009) Metaheuristics: from design to implementation. Wiley Publishing, New Jersey

    Book  Google Scholar 

  33. Duman S, Kahraman HT, Kahraman SY, Güvenç U, Kati M, Aras S (2022) A powerful metaheuristic search algorithm for solving global optimization and real-world solar photovoltaic parameter estimation problems. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2022.104763s

    Article  Google Scholar 

  34. Qaraad M, Amjad S, Hussein NK, Badawy M, Mirjalili S, Elhosseini MA (2023) Photovoltaic parameter estimation using improved moth flame algorithms with local escape operators. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2023.108603

    Article  Google Scholar 

  35. Mizutani FT, Pessoa FLP, Queiroz EM, Hauan S, Grossmann IE (2003) Mathematical programming model for heat-exchanger network synthesis including detailed heat-exchanger designs.1. Shell-and-tube heat exchanger design. Ind Eng Chem Res 42:4009–4018. https://doi.org/10.1021/ie020964u

    Article  Google Scholar 

  36. Kara YA, Güraras O (2004) A computer program for designing of shell-and-tube heat exchangers. Appl Therm Eng 24(13):1797–1805. https://doi.org/10.1016/j.applthermaleng.2003.12.014

    Article  Google Scholar 

  37. Mohanty DK (2016) Gravitational search algorithm for economic optimization design of a shell and tube heat exchanger. Appl Therm Eng 107:184–193. https://doi.org/10.1016/j.applthermaleng.2016.06.133

    Article  Google Scholar 

  38. Dhavle SV, Kulkarni AJ, Shastri A et al (2018) Design and economic optimization of shell-and-tube heat exchanger using cohort intelligence algorithm. Neural Comput Appl 30:111–125. https://doi.org/10.1007/s00521-016-2683-z

    Article  Google Scholar 

  39. Asadbeigi S, Ahmadi E, Goodarzi M, Sagharichian A (2023) Analyzing and simulating heat transfer and designing a shell and tube heat exchanger for the pasteurization process of tomato paste: a CFD study. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e21593

    Article  Google Scholar 

  40. Yan Z, Zhou D, Zhang Q et al (2023) A critical review on fouling influence factors and antifouling coatings for heat exchangers of high-salt industrial wastewater. Desalination. https://doi.org/10.1016/j.desal.2023.116504

    Article  Google Scholar 

  41. Hou Y, Wu W, Li Z et al (2023) Effect of drying air supply temperature and internal heat exchanger on performance of a novel closed-loop transcritical CO2 air source heat pump drying system. Renew Energy. https://doi.org/10.1016/j.renene.2023.119516

    Article  Google Scholar 

  42. Khan Z, Khan ZA (2019) Thermodynamic performance of a novel shell-and-tube heat exchanger incorporating paraffin as thermal storage solution for domestic and commercial applications. Appl Therm Eng. https://doi.org/10.1016/j.applthermaleng.2019.114007

    Article  Google Scholar 

  43. Karsli GT, Cekmecelioglu D (2023) Design and simulation of heat exchangers for the food industry. Therm Process Food Prod Steam Hot Water. https://doi.org/10.1016/B978-0-12-818616-9.00012-2

    Article  Google Scholar 

  44. Yao J, Zhu P, Guo L, Yang F, Zhang Z, Ren J, Zhen W (2021) Study of a metal hydride based thermal energy storage system using multi-phase heat exchange for the application of concentrated solar power system. Int J Hydrog Energy 46(57):29332–29347. https://doi.org/10.1016/j.ijhydene.2020.10.261

    Article  Google Scholar 

  45. Liu G, Huang Y, Wang J, Liu R (2020) A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2020.110290

    Article  Google Scholar 

  46. Li M, Zhuang Y, Li W et al (2021) A surrogate-based optimization framework for simultaneous synthesis of chemical process and heat exchanger network. Chem Eng Res Des 170:180–188. https://doi.org/10.1016/j.cherd.2021.04.001

    Article  Google Scholar 

  47. Fang FC, Ji Y, Alazzawi AK et al (2023) Utilization of least squares support vector machine for predicting the yearly exergy yield of a hybrid renewable energy system composed of a building integrated photovoltaic thermal system and an earth air heat exchanger system. Eng Anal Bound Elem 152:293–300. https://doi.org/10.1016/j.enganabound.2023.03.045

    Article  Google Scholar 

  48. Farahbakhsh S (2022) Keshtkar MM Economy and energy saving in Kaveh petrochemical methanol complex with emphasis on heat exchanger networks using pinch technology. Int J Environ Sci Technol 19:8899–8910. https://doi.org/10.1007/s13762-022-04113-y

    Article  Google Scholar 

  49. Al-Gwaiz MM, Murty KG (2015) Optimizing the design of heat exchanger networks in crude oil refineries. In: Murty KG (ed) Case studies in operations research: applications of optimal decision making. Springer New York, New York, NY. https://doi.org/10.1007/978-1-4939-1007-6_11

    Chapter  Google Scholar 

  50. Ali HM, Hassan A, Wahab A (2022) Nanofluids for heat exchangers. Springer, Singapore. https://doi.org/10.1007/978-981-19-3227-4

    Book  Google Scholar 

  51. Rai R, Dhal KG (2023) Recent developments in equilibrium optimizer algorithm: its variants and applications. Arch Comput Methods Eng 30(6):3791–3844. https://doi.org/10.1007/s11831-023-09923-y

    Article  Google Scholar 

  52. Bangyal WH, Kashif N, Soomro TR et al (2022) An improved particle swarm optimization algorithm for data classification. Appl Sci. https://doi.org/10.3390/app13010283

    Article  Google Scholar 

  53. Corder GW, Foreman DI (2014) Nonparametric statistics: a step-by-step approach. John Wiley & Sons, New Jersey

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Amal Moharam: Methodology, Investigation, Software, Writing—original draft, Amira Y. Haikal: Conceptualization, Supervision, Validation. Mostafa A. Elhosseini: Conceptualization, Writing—review & editing, Supervision.

Corresponding author

Correspondence to Mostafa Elhosseini.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moharam, A., Haikal, A.Y. & Elhosseini, M. Economically optimized heat exchanger design: a synergistic approach using differential evolution and equilibrium optimizer within an evolutionary algorithm framework. Neural Comput & Applic (2024). https://doi.org/10.1007/s00521-024-09829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00521-024-09829-1

Keywords

Navigation