Skip to main content
Log in

On the thermal performance during flow dynamics of viscoelastic fluid in a channel: Jaffrey–Hamel extension

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An extended Jaffrey–Hamel problem with heat and mass transfer attributes of viscoelastic fluid over an isothermal porous conduit, where the flow is produced by injecting the fluid at the inlet of the convergent section, has been described. The homogeneous processes dictated by first-order kinetics take place in the adjacent fluid, whereas the heterogeneous reactions supplied by cubic autocatalytic dynamics are believed to take place on the channel wall. To simulate both inertial drag and bulk permeable drag of the porosity medium, a non-Darcy-drag force concept is used. Slow velocity leads to the disregarding of viscous dissipation. Thermal radiation and a heat source or sink work together to keep the temperature in equilibrium in the flow domain. The simulation-based numerical solutions for dimensionless temperature, velocity, and concentration have been derived by applying appropriate similarity transformations to the highly nonlinear momentum equation, thermal, and species concentration equations. A more secure velocity profile results from a longer strain retardation time and a shorter stress relaxation time, whereas both viscoelastic times have reverse consequences. The thermal distribution is quantitatively improved with an increase in the radiation parameter, suggesting a higher rate of heat transmission. Concentration drops as heterogeneous reaction parameters are amplified . With an increase in the porosity number, surface viscous drag becomes more intense. Divergent cross section shows a greater tendency for heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The author confirms that the data supporting the findings of this study are available within the manuscript.

References

  1. Hayat T, Farooq M, Alsaedi A (2014) Melting heat transfer in the stagnation-point flow of Maxwell fluid with double-diffusive convection. Int J Numer Meth Heat Fluid Flow 24:760–774. https://doi.org/10.1108/HFF-09-2012-0219

    Article  MathSciNet  MATH  Google Scholar 

  2. Irfan M, Khan M, Khan WA et al (2020) Influence of thermal-solutal stratifications and thermal aspects of non-linear radiation in stagnation point Oldroyd-B nanofluid flow. Int Commun Heat Mass Transf 116:104636. https://doi.org/10.1016/j.icheatmasstransfer.2020.104636

    Article  Google Scholar 

  3. Zhang Y, Zhang M, Bai Y (2016) Flow and heat transfer of an Oldroyd-B nanofluid thin film over an unsteady stretching sheet. J Mol Liq 220:665–670. https://doi.org/10.1016/j.molliq.2016.04.108

    Article  Google Scholar 

  4. Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2017) An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int J Therm Sci 111:274–288. https://doi.org/10.1016/j.ijthermalsci.2016.08.009

    Article  Google Scholar 

  5. Renardy M, Thomases B (2021) A mathematician’s perspective on the Oldroyd B model: progress and future challenges. J Non-Newton Fluid Mech 293:104573. https://doi.org/10.1016/j.jnnfm.2021.104573

    Article  MathSciNet  Google Scholar 

  6. Jiang Y, Sun H, Bai Y, Zhang Y (2022) MHD flow, radiation heat and mass transfer of fractional Burgers’ fluid in porous medium with chemical reactionImage 1. Comput Math Appl 115:68–79. https://doi.org/10.1016/j.camwa.2022.01.014

    Article  MathSciNet  MATH  Google Scholar 

  7. Hayat T, Waqas M, Shehzad SA, Alsaedi A (2016) On model of Burgers fluid subject to magneto nanoparticles and convective conditions. J Mol Liq 222:181–187. https://doi.org/10.1016/j.molliq.2016.06.087

    Article  Google Scholar 

  8. Hayat T, Imtiaz M, Alsaedi A, Almezal S (2016) On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. J Magn Magn Mater 401:296–303. https://doi.org/10.1016/j.jmmm.2015.10.039

    Article  Google Scholar 

  9. Ramzan M, Farooq M, Alhothuali MS et al (2015) Three dimensional flow of an Oldroyd-B fluid with Newtonian heating. Int J Numer Meth Heat Fluid Flow 25:68–85. https://doi.org/10.1108/HFF-03-2014-0070

    Article  MathSciNet  MATH  Google Scholar 

  10. Gireesha BJ, Kumar KG, Ramesh GK, Prasannakumara BC (2018) Nonlinear convective heat and mass transfer of Oldroyd-B nanofluid over a stretching sheet in the presence of uniform heat source/sink. Results Phys 9:1555–1563. https://doi.org/10.1016/j.rinp.2018.04.006

    Article  Google Scholar 

  11. Haneef M, Nawaz M, Alharbi SO, Elmasry Y (2021) Cattaneo–Christov heat flux theory and thermal enhancement in hybrid nano Oldroyd-B rheological fluid in the presence of mass transfer. Int Commun Heat Mass Transf 126:105344. https://doi.org/10.1016/j.icheatmasstransfer.2021.105344

    Article  Google Scholar 

  12. Hafeez A, Khan M (2021) Flow of Oldroyd-B fluid caused by a rotating disk featuring the Cattaneo–Christov theory with heat generation/absorption. Int Commun Heat Mass Transf 123:105179. https://doi.org/10.1016/j.icheatmasstransfer.2021.105179

    Article  Google Scholar 

  13. Sandeep N, Sulochana C (2018) Momentum and heat transfer behaviour of Jeffrey, Maxwell and Oldroyd-B nanofluids past a stretching surface with non-uniform heat source/sink. Ain Shams Eng J 9:517–524. https://doi.org/10.1016/j.asej.2016.02.008

    Article  Google Scholar 

  14. Tlili I, Samrat SP, Sandeep N, Nabwey HA (2021) Effect of nanoparticle shape on unsteady liquid film flow of MHD Oldroyd-B ferrofluid. Ain Shams Eng J 12:935–941. https://doi.org/10.1016/j.asej.2020.06.007

    Article  Google Scholar 

  15. Jr RWC, Poirier RV (2002) Use of tubular flow reactors for kinetic studies over extended pressure ranges. ACS Publications. https://doi.org/10.1021/j100680a033. Accessed 4 May 2023

  16. Ogren PJ (2002) Analytical results for first-order kinetics in flow tube reactors with wall reactions. ACS Publications. https://doi.org/10.1021/j100584a001. Accessed 4 May 2023

  17. Gray P, Scott SK, Gray P, Scott SK (1994) Chemical oscillations and instabilities: non-linear chemical kinetics. Oxford University Press, Oxford, New York

    Google Scholar 

  18. Scott SK (1993) Chemical chaos. Clarendon Press

    Google Scholar 

  19. Williams WR, Stenzel MT, Song X, Schmidt LD (1991) Bifurcation behavior in homogeneous-heterogeneous combustion: I. Experimental results over platinum. Combust Flame 84:277–291. https://doi.org/10.1016/0010-2180(91)90006-W

    Article  Google Scholar 

  20. Song X, Williams WR, Schmidt LD, Aris R (1991) Bifurcation behavior in homogeneous-heterogeneous combustion: II. Computations for stagnation-point flow. Combust Flame 84:292–311. https://doi.org/10.1016/0010-2180(91)90007-X

    Article  Google Scholar 

  21. Williams WR, Zhao J, Schmidt LD (1991) Ignition and extinction of surface and homogeneous oxidation of NH3 and CH4. AIChE J 37:641–649. https://doi.org/10.1002/aic.690370502

    Article  Google Scholar 

  22. Chaudhary MA, Merkin JH (1995) A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. I. Equal diffusivities. Fluid Dyn Res 16:311–333. https://doi.org/10.1016/0169-5983(95)00015-6

    Article  MathSciNet  MATH  Google Scholar 

  23. Chaudhary MA, Merkin JH (1995) A simple isothermal model for homogeneous-heterogeneous reactions in boundary-layer flow. II Different diffusivities for reactant and autocatalyst. Fluid Dyn Res 16:335. https://doi.org/10.1016/0169-5983(95)90813-H

    Article  MathSciNet  MATH  Google Scholar 

  24. Kameswaran PK, Shaw S, Sibanda P, Murthy PVSN (2013) Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous stretching sheet. Int J Heat Mass Transf 57:465–472. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.047

    Article  Google Scholar 

  25. Eswaramoorthi S, Bhuvaneswari M, Sivasankaran S, Makinde OD (2018) Heterogeneous and homogeneous reaction analysis on MHD Oldroyd-B Fluid with Cattaneo–Christov heat flux model and convective heating. Defect Diffus Forum 387:194–206. https://doi.org/10.4028/www.scientific.net/DDF.387.194

    Article  Google Scholar 

  26. Gangadhar K, Kumari MA, Venkata Subba Rao M, Chamkha AJ (2022) Oldroyd-B nanoliquid flow through a triple stratified medium submerged with gyrotactic bioconvection and nonlinear radiations. Arab J Sci Eng 47:8863–8875. https://doi.org/10.1007/s13369-021-06412-x

    Article  Google Scholar 

  27. Yasir M, Ahmed A, Khan M, Usman M (2022) Theoretical investigation of time-dependent Oldroyd-B nanofluid flow containing gyrotactic microorganisms due to stretching cylinder. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2040758

    Article  Google Scholar 

  28. Zhang A, Wang Z, Ding G et al (2021) Numerical and experimental investigation on heat transfer characteristics of nanofluids in a circular tube with CDTE. Heat Mass Transfer 57:1329–1345. https://doi.org/10.1007/s00231-021-03026-9

    Article  Google Scholar 

  29. Garud KS, Lee M-Y (2021) Numerical investigations on heat transfer characteristics of single particle and hybrid nanofluids in uniformly heated tube. Symmetry 13:876. https://doi.org/10.3390/sym13050876

    Article  Google Scholar 

  30. Elangovan K, Subbarao K, Gangadhar K (2022) An analytical solution for radioactive MHD flow TiO2–Fe3O4/H2O nanofluid and its biological applications. Int J Ambient Energy 43:7576–7587. https://doi.org/10.1080/01430750.2022.2073264

    Article  Google Scholar 

  31. Ma X, Song Y, Wang Y et al (2022) Experimental study of boiling heat transfer for a novel type of GNP-Fe3O4 hybrid nanofluids blended with different nanoparticles. Powder Technol 396:92–112. https://doi.org/10.1016/j.powtec.2021.10.029

    Article  Google Scholar 

  32. Gangadhar K, Bhanu Lakshmi K, Kannan T, Chamkha AJ (2022) Bioconvective magnetized oldroyd-B nanofluid flow in the presence of Joule heating with gyrotactic microorganisms. Waves Random Complex Media. https://doi.org/10.1080/17455030.2022.2050441

    Article  Google Scholar 

  33. Jeffery GB (1915) L. The two-dimensional steady motion of a viscous fluid. Lond Edinb Dublin Philos Mag J Sci 29:455–465. https://doi.org/10.1080/14786440408635327

    Article  MATH  Google Scholar 

  34. Hamel G (1917) Spiralförmige Bewegungen zäher Flüssigkeiten. Jahresber Deutsch Math-Verein 25:34–60

    MATH  Google Scholar 

  35. Sheikholeslami M, Ganji DD, Ashorynejad HR, Rokni HB (2012) Analytical investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method. Appl Math Mech-Engl Ed 33:25–36. https://doi.org/10.1007/s10483-012-1531-7

    Article  MathSciNet  MATH  Google Scholar 

  36. Rehman S, Hashim TY et al (2023) A renovated Jaffrey–Hamel flow problem and new scaling statistics for heat, mass fluxes with Cattaneo–Christov heat flux model. Case Stud Therm Eng 43:102787. https://doi.org/10.1016/j.csite.2023.102787

    Article  Google Scholar 

  37. Kaloni PN, Huschilt K (1984) Semi-inverse solutions of a non-newtonian fluid. Int J Non-Linear Mech 19:373–381. https://doi.org/10.1016/0020-7462(84)90065-9

    Article  MathSciNet  MATH  Google Scholar 

  38. Mansutti D, Ramgopal KR (1991) Flow of a shear thinning fluid between intersecting planes. Int J Non-Linear Mech 26:769–775. https://doi.org/10.1016/0020-7462(91)90027-Q

    Article  MATH  Google Scholar 

  39. Harley C, Momoniat E, Rajagopal KR (2018) Reversal of flow of a non-Newtonian fluid in an expanding channel. Int J Non-Linear Mech 101:44–55. https://doi.org/10.1016/j.ijnonlinmec.2018.02.006

    Article  Google Scholar 

  40. Drazin PG (1999) Flow through a diverging channel: instability and bifurcation. Fluid Dyn Res 24:321. https://doi.org/10.1016/S0169-5983(99)00003-9

    Article  MathSciNet  MATH  Google Scholar 

  41. Drazin PG (1995) Stability of flow in a diverging channel. Stability and wave propagation in fluids and solids. Springer, Vienna, pp 39–65

    Chapter  Google Scholar 

  42. Oldroyd JG (1950) On the formulation of rheological equations of state. Proc R Soc A 200:523–541. https://doi.org/10.1098/rspa.1950.0035

    Article  MathSciNet  MATH  Google Scholar 

  43. Buongiorno J (2005) Convective Transport in Nanofluids. J Heat Transf 128:240–250. https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  44. Dogonchi AS, Ganji DD (2016) Investigation of MHD nanofluid flow and heat transfer in a stretching/shrinking convergent/divergent channel considering thermal radiation. J Mol Liq 220:592–603. https://doi.org/10.1016/j.molliq.2016.05.022

    Article  Google Scholar 

  45. Mishra A, Pandey AK, Chamkha AJ, Kumar M (2020) Roles of nanoparticles and heat generation/absorption on MHD flow of Ag–H2O nanofluid via porous stretching/shrinking convergent/divergent channel. J Egypt Math Soc 28:17. https://doi.org/10.1186/s42787-020-00079-3

    Article  MATH  Google Scholar 

  46. Rehman S, Hashim AS, SI, Galal AM, (2022) Multiple aspects of heat generation/absorption on the hydromagnetic flow of Carreau nanofluids via nonuniform channels. Proc Inst Mech Eng E: J Process Mech Eng. https://doi.org/10.1177/09544089221133343

    Article  Google Scholar 

  47. Boujelbene M, Rehman S, Hashim, et al (2023) Optimizing thermal characteristics and entropy degradation with the role of nanofluid flow configuration through an inclined channel. Alex Eng J 69:85–107. https://doi.org/10.1016/j.aej.2023.01.026

    Article  Google Scholar 

  48. Keller HB (1971) A new difference scheme for parabolic problems. **This work was supported by the U. S. Army Research Office, Durham, under Contract DAHC 04-68-C-0006. In: Hubbard B (ed) Numerical solution of partial differential equations-II. Academic Press, pp 327–350

  49. Cebeci T, Bradshaw P (2012) Physical and computational aspects of convective heat transfer. Springer, New York

    MATH  Google Scholar 

  50. Habib D, Salamat N, Abdal SHS, Ali B (2022) Numerical investigation for MHD Prandtl nanofluid transportation due to a moving wedge: Keller box approach. Int Commun Heat Mass Transf 135:106141. https://doi.org/10.1016/j.icheatmasstransfer.2022.106141

    Article  Google Scholar 

  51. Moradi A, Alsaedi A, Hayat T (2013) Investigation of nanoparticles effect on the Jeffery–Hamel flow. Arab J Sci Eng 38:2845–2853. https://doi.org/10.1007/s13369-012-0472-2

    Article  MathSciNet  Google Scholar 

  52. Rana P, Shukla N, Gupta Y, Pop I (2019) Homotopy analysis method for predicting multiple solutions in the channel flow with stability analysis. Commun Nonlinear Sci Numer Simul 66:183–193. https://doi.org/10.1016/j.cnsns.2018.06.012

    Article  MathSciNet  MATH  Google Scholar 

  53. Afonso AM, Oliveira PJ, Pinho FT, Alves MA (2011) Dynamics of high-Deborah-number entry flows: a numerical study. J Fluid Mech 677:272–304. https://doi.org/10.1017/jfm.2011.84

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group research project under Grant No. RGP2/290/44.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohail Rehman.

Ethics declarations

Conflict of interest

The authors of this manuscript have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, S., Alqahtani, S., Hashim et al. On the thermal performance during flow dynamics of viscoelastic fluid in a channel: Jaffrey–Hamel extension. Neural Comput & Applic 35, 21949–21965 (2023). https://doi.org/10.1007/s00521-023-08854-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08854-w

Keywords

Navigation