Skip to main content
Log in

Parameter adaptive pulse coupled neural network-based saliency map fusion strategy for salient object detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Today, salient object detection has caught the interest of numerous researchers for a variety of applications in computer vision. Most deep learning-based algorithms for SOD tasks produce excellent results but require a lot of data availability and large computational and structural complexities. Also, many methods provide excellent outcomes but are unable to preserve the complete boundaries of the objects in images. The paper discusses an innovative integration method for salient object detection of superpixel segmented images to address these issues. It deals with the integration of saliency maps generated by image decomposition based on non-sub-sampled contourlet transform (NSCT) and by machine learning technique based on the random forest regression using a parameter adaptive pulse coupled neural network (PA-PCNN). The PA-PCNN adaptively estimates each of the free parameters of the pulse-coupled neural network (PCNN). The utilization of PA-PCNN considers neighborhood pixel variances and aids in maintaining object details without fuzziness or distortions. The proposed method restores the edges and boundaries of the objects effectively as PA-PCNN aids in maintaining the perceptually similar attributes of the saliency maps. The results of this study are evaluated using three widely used datasets for detecting salient objects, which show the potential of the proposed system to precisely locate the salient objects in various imaging circumstances like complex background images, images with multiple objects, etc. The quantitative and qualitative experimental results validate a substantial advancement in various evaluation parameters for salient object detection with better boundary preservation of objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhu S, Chang Q, Li Q (2022) Video saliency aware intelligent hd video compression with the improvement of visual quality and the reduction of coding complexity. Neural Comput Appl 34(10):7955–7974

    Article  Google Scholar 

  2. Ji Y, Zhang H, Zhang Z, Liu M (2021) Cnn-based encoder-decoder networks for salient object detection: a comprehensive review and recent advances. Inf Sci 546:835–857

    Article  MathSciNet  Google Scholar 

  3. Wang Z, Zhang Y, Liu Y, Wang Z, Coleman S, Kerr D (2022) Tf-sod: a novel transformer framework for salient object detection. Neural Comput Appl:1–18

  4. Nan M, Xin X, Zhang X, Zhang H (2018) Salient object detection using a covariance-based cnn model in low-contrast images. Neural Comput Appl 29(8):181–192

    Article  Google Scholar 

  5. Pang Yu, Xiaosheng Yu, Yunhe W, Chengdong W, Jiang Y (2020) Bagging-based saliency distribution learning for visual saliency detection. Signal Process Image Commun 87:115928

    Article  Google Scholar 

  6. Wang F, Peng G (2021) Saliency detection based on color descriptor and high-level prior. Mach Vis Appl:1–12

  7. Sun X, Zhang X, Xu C, Xiao M, Tang Y (2022) Tensorial multiview representation for saliency detection via nonconvex approach. IEEE Trans Cybern

  8. Wang W, Lai Q, Fu H, Shen J, Ling H, Yang R (2021) Salient object detection in the deep learning era: an in-depth survey. IEEE Trans Pattern Anal Mach Intell

  9. Li L, Fu H, Xu X (2021) Active learning with sampling by joint global-local uncertainty for salient object detection. Neural Comput Appl:1–13

  10. Xiaofang M, Qi H, Li X (2020) Automatic segmentation of images with superpixel similarity combined with deep learning. Circuits Syst Signal Process 39(2):884–899

    Article  Google Scholar 

  11. Ji Y, Zhang H, Tseng K-K, Chow TWS, Jonathan Wu QM (2019) Graph model-based salient object detection using objectness and multiple saliency cues. Neurocomputing 323:188–202

    Article  Google Scholar 

  12. Yang C, Zhang L, Huchuan L (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process Lett 20(7):637–640

    Article  Google Scholar 

  13. Yang C, Zhang L, Lu H, Ruan X, Yang M-H (2013) Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE CVPR, pp. 3166–3173

  14. Jian M, Zhang W, Hui Yu, Cui C, Nie X, Zhang H, Yin Y (2018) Saliency detection based on directional patches extraction and principal local color contrast. J Vis Commun Image Rep 57:1–11

    Article  Google Scholar 

  15. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion fourier transform. In: 2008 IEEE conference on computer vision and pattern recognition. IEEE, pp 1–8

  16. Li J, Levine MD, An X, Xu X, He H (2012) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35(4):996–1010

    Article  Google Scholar 

  17. Murray N, Vanrell M, Otazu X, Alejandro Parraga C (2011) Saliency estimation using a non-parametric low-level vision model. In: CVPR 2011. IEEE, pp 433–440

  18. Zhang F, Tsu-Yang W, Zheng G (2019) Video salient region detection model based on wavelet transform and feature comparison. EURASIP J Image Video Process 2019(1):1–10

    Article  Google Scholar 

  19. Li Z, Lang C, Feng S, Wang T (2018) Saliency ranker: a new salient object detection method. J Vis Commun Image Rep 50:16–26

    Article  Google Scholar 

  20. Lei J, Wang B, Fang Y, Lin W, Le Callet P, Ling N, Hou C (2016) A universal framework for salient object detection. IEEE Trans Multimedia 18(9):1783–1795

    Article  Google Scholar 

  21. Zhou X, Liu Z, Li K, Sun G (2018) Video saliency detection via bagging-based prediction and spatiotemporal propagation. J Vis Commun Image Rep 51:131–143

    Article  Google Scholar 

  22. Tong N, Lu H, Ruan X, Yang M-H (2015) Salient object detection via bootstrap learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1884–1892

  23. Wang F, Peng G (2021) Saliency detection based on color descriptor and high-level prior. Mach Vis Appl 32(6):1–12

    Article  Google Scholar 

  24. Shariatmadar ZS, Faez K (2019) Visual saliency detection via integrating bottom-up and top-down information. Optik 178:1195–1207

    Article  Google Scholar 

  25. Imamoglu N, Lin W, Fang Y (2012) A saliency detection model using low-level features based on wavelet transform. IEEE Trans Multimedia 15(1):96–105

    Article  Google Scholar 

  26. Ban Z, Liu J, Cao L (2018) Superpixel segmentation using gaussian mixture model. IEEE Trans Image Process 27(8):4105–4117

    Article  MathSciNet  MATH  Google Scholar 

  27. Da Cunha AL, Zhou J, Do MN (2006) The nonsubsampled contourlet transform: theory, design, and applications. IEEE Trans Image Process 15(10):3089–3101

    Article  Google Scholar 

  28. Ming Y, Xiaoning Liu Yu, Liu XC (2018) Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans Instrum Meas 68(1):49–64

    Google Scholar 

  29. Becker C, Rigamonti R, Lepetit V, Fua P (2013) Supervised feature learning for curvilinear structure segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 526–533

  30. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H-Y (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Google Scholar 

  31. Li H, Huchuan L, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186

    Article  MathSciNet  MATH  Google Scholar 

  32. Li C, Yuan Y, Cai W, Xia Y, Dagan Feng D (2015) Robust saliency detection via regularized random walks ranking. In: Proceedings of the IEEE CVPR, pp 2710–2717

  33. Tong N, Huchuan L, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recogn 48(10):3258–3267

    Article  Google Scholar 

  34. Zhou L, Yang Z, Zhou Z, Dewen H (2017) Salient region detection using diffusion process on a two-layer sparse graph. IEEE Trans Image Process 26(12):5882–5894

    Article  MathSciNet  Google Scholar 

  35. Keren F, Gong C, Irene Yu-Hua G, Yang J (2015) Normalized cut-based saliency detection by adaptive multi-level region merging. IEEE Trans Image Process 24(12):5671–5683

    Article  MathSciNet  MATH  Google Scholar 

  36. Yuan Y, Li C, Kim J, Cai W, Feng DD (2018) Reversion correction and regularized random walk ranking for saliency detection. IEEE Trans Image Process 27(3):1311–1322

    Article  MathSciNet  MATH  Google Scholar 

  37. Peng H, Li B, Ling H, Weiming H, Xiong W, Maybank SJ (2016) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell 39(4):818–832

    Article  Google Scholar 

  38. Liu G-H, Yang J-Y (2019) Exploiting color volume and color difference for salient region detection. IEEE Trans Image Process 28(1):6–16

    Article  MathSciNet  MATH  Google Scholar 

  39. Ming Zhang Yu, Pang YW, Yue D, Sun H, Zhang K (2018) Saliency detection via local structure propagation. J Vis Commun Image Rep 52:131–142

    Article  Google Scholar 

  40. Zeng Y, Zhang P, Zhang J, Lin Z, Lu H (2019) Towards high-resolution salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 7234–7243

  41. Amirul Islam Md, Kalash M, Bruce NDB (2018) Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 7142–7150

  42. Zhao J-X, Liu J-J, Fan D-P, Cao Y, Yang J, Cheng M-M (2019) Egnet: edge guidance network for salient object detection. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 8779–8788

  43. Zhang X, Wang T, Qi J, Lu H, Wang G (2018) Progressive attention guided recurrent network for salient object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 714–722

  44. Wang T, Zhang L, Lu H, Sun C, Qi J (2016) Kernelized subspace ranking for saliency detection. In: European conference on computer vision. Springer, pp 450–466

  45. Movahedi V, Elder JH (2010) Design and perceptual validation of performance measures for salient object segmentation. In: 2010 IEEE CVPR-workshops. IEEE, pp 49–56

  46. Shi J, Yan Q, Li X, Jia J (2015) Hierarchical image saliency detection on extended cssd. IEEE Trans Pattern Anal Mach Intell 38(4):717–729

    Article  Google Scholar 

  47. Fan D-P, Cheng M-M, Liu Y, Li T, Borji A (2017) Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE international conference on computer vision, pp 4548–4557

  48. Fan D-P, Gong C, Cao Y, Ren B, Cheng M-M, Borji A (2018) Enhanced-alignment measure for binary foreground map evaluation. Preprint arXiv:1805.10421

  49. Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proceedings of the 23rd international conference on Machine learning, pp 233–240

  50. Achanta R, Hemami S, Estrada F, Susstrunk S (2009)Frequency-tuned salient region detection. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 1597–1604

  51. Borji A, Cheng M-M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagyashree V. Lad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lad, B.V., Hashmi, M.F. & Keskar, A.G. Parameter adaptive pulse coupled neural network-based saliency map fusion strategy for salient object detection. Neural Comput & Applic 35, 15743–15757 (2023). https://doi.org/10.1007/s00521-023-08579-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08579-w

Keywords

Navigation