Skip to main content
Log in

Thermal error prediction and control method combining residual-based one-dimensional convolution-minimum gate unit model with physical-data-edge-cloud terminal architecture

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The geometric precision of machined parts is greatly reduced due to thermal errors, thereby the thermal errors should be controlled and compensated timely to improve the machining accuracy. But the previously established thermal error models in related studies are not robust, and the predictive accuracy is not high, and the convergence is weak. Moreover, the error control delay is serious due to the network bandwidth limitation. To overcome the above challenges, the theoretical and data-driven methods are combined. The intrinsic long-term memory characteristic of thermal errors is revealed by the theoretical method and the finite element analysis, providing a theoretical guidance for the data-driven method. Then a residual-based one-dimensional convolution-minimum gate unit model is designed based on the residual connection. The designed one-dimensional convolution layer extracts the data features, and the residual connection with multiple pooling layers is used to compress the dimension of the error data. The minimal gate unit is used to improve the convergence rate. Then a new physical-data-edge-cloud terminal architecture is proposed by combining the advantages of the cloud computing and edge computing. Finally, the experiment was conducted to verify the designed physical-data-edge-cloud terminal architecture. The results indicate that the predictive accuracy is 98.18% and that the convergence time is shortened to 13.719 s compared with traditional thermal error models. Furthermore, the geometric error is reduced by more than 80%, and the total time consumption is 166 s, and the data transmission time is 25 s. The system efficiency of the designed physical-data-edge-cloud terminal system is far higher than that of physical-edge-cloud, physical-data-cloud, and physical-cloud systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Liu JL, Ma C, Wang SL (2020) Data-driven thermally-induced error compensation method of high-speed and precision five-axis machine tools. Mech Syst Signal Process 138:106538. https://doi.org/10.1016/j.ymssp.2019.106538

    Article  Google Scholar 

  2. Liu JL, Ma C, Wang SL et al (2019) Thermal-structure interaction characteristics of a high-speed spindle-bearing system. Int J Mach Tools Manuf 137:42–57. https://doi.org/10.1016/j.ijmachtools.2018.10.004

    Article  Google Scholar 

  3. Wu CY, Xiang ST, Xiang WS (2021) Spindle thermal error prediction approach based on thermal infrared images: a deep learning method. J Manuf Syst 59:67–80. https://doi.org/10.1016/j.jmsy.2021.01.013

    Article  Google Scholar 

  4. Li Y, Zhao WH, Lan SH et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Tools Manuf 95:20–38. https://doi.org/10.1016/j.ijmachtools.2015.04.008

    Article  Google Scholar 

  5. Mayr J, Jedrzejewski J, Uhlmann E et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791. https://doi.org/10.1016/j.cirp.2012.05.008

    Article  Google Scholar 

  6. Liu H, Miao EM, Wei XY et al (2017) Robust modeling method for thermal error of CNC machine tools based on ridge regression algorithm. Int J Mach Tools Manuf 113:35–48. https://doi.org/10.1016/j.ijmachtools.2016.11.001

    Article  Google Scholar 

  7. Grama SN, Mathur A, Badhe AN (2018) A model-based cooling strategy for motorized spindle to reduce thermal errors. Int J Mach Tools Manuf 132:3–16. https://doi.org/10.1016/j.ijmachtools.2018.04.004

    Article  Google Scholar 

  8. Xiang ST, Yao XD, Du ZC et al (2018) Dynamic linearization modeling approach for spindle thermal errors of machine tools. Mechatronics 53:215–228. https://doi.org/10.1016/j.mechatronics.2018.06.018

    Article  Google Scholar 

  9. Cheng J, Zhou ZD, Liu ZY et al (2018) Thermo-mechanical coupling analysis of a high-speed actuating mechanism based on a new thermal contact resistance model. Appl Therm Eng 140:487–497. https://doi.org/10.1016/j.applthermaleng.2018.05.063

    Article  Google Scholar 

  10. Liu T, Gao WG, Zhang DW et al (2017) Analytical modeling for thermal errors of motorized spindle unit. Int J Mach Tools Manuf 112:53–70. https://doi.org/10.1016/j.ijmachtools.2016.09.008

    Article  Google Scholar 

  11. Zheng EL, Jia F, Zhu SH (2014) Thermal modelling and characteristics analysis of high speed press system. Int J Mach Tools Manuf 85:87–99. https://doi.org/10.1016/j.ijmachtools.2014.05.009

    Article  Google Scholar 

  12. Ma C, Mei XS, Yang J et al (2015) Thermal characteristics analysis and experimental study on the high-speed spindle system. Int J Adv Manuf Technol 79(1–4):469–489. https://doi.org/10.1007/s00170-015-6821-z

    Article  Google Scholar 

  13. Marani M, Zeinali M, Songmene V et al (2021) Tool wear prediction in high-speed turning of a steel alloy using long short-term memory modelling. Measurement 177:109329. https://doi.org/10.1016/j.measurement.2021.109329

    Article  Google Scholar 

  14. Liu J, Gui H, Ma C (2023) Digital twin system of thermal error control for a large-size gear profile grinder enabled by gated recurrent unit. J Ambient Intell Humaniz Comput 14:1269–1295. https://doi.org/10.1007/s12652-021-03378-4

    Article  Google Scholar 

  15. Zendehboudi A, Hosseini SH, Ahmadi G (2019) Modeling of frost thermal conductivity on parallel surface channels. Measurement 140:293–304. https://doi.org/10.1016/j.measurement.2019.03.045

    Article  Google Scholar 

  16. Li B, Tian XT, Zhang M (2019) Thermal error modeling of machine tool spindle based on the improved algorithm optimized BP neural network. Int J Adv Manuf Technol 105(1–4):1497–1505. https://doi.org/10.1007/s00170-019-04375-w

    Article  Google Scholar 

  17. Li Q, Li HL (2019) A general method for thermal error measurement and modeling in CNC machine tools’ spindle. Int J Adv Manuf Technol 103(5–8):2739–2749. https://doi.org/10.1007/s00170-019-03665-7

    Article  Google Scholar 

  18. Miao E, Liu Y, Dong Y et al (2016) Improvement of forecasting robustness of time series model for thermal error on CNC machine tool. Opt Precis Eng 24(10):2480–2489

    Article  Google Scholar 

  19. Liu J, Ma C, Gui H et al (2021) Thermally-induced error compensation of spindle system based on long short term memory neural networks. Appl Soft Comput 102:107094. https://doi.org/10.1016/j.asoc.2021.107094

    Article  Google Scholar 

  20. Ma C, Gui H, Liu J (2023) Self learning-empowered thermal error control method of precision machine tools based on digital twin. J Intell Manuf 34:695–717. https://doi.org/10.1007/s10845-021-01821-z

    Article  Google Scholar 

  21. Chen Y, Chen JH, Xu GD (2021) A data-driven model for thermal error prediction considering thermoelasticity with gated recurrent unit attention. Measurement 184:109891. https://doi.org/10.1016/j.measurement.2021.109891

    Article  Google Scholar 

  22. Chen X, Yang H (2017) A multi-stage optimization of passively designed high-rise residential buildings in multiple building operation scenarios. Appl Energy 206:541–557. https://doi.org/10.1016/j.apenergy.2017.08.204

    Article  Google Scholar 

  23. Liu K, Li T, Liu H et al (2020) Analysis and prediction for spindle thermal bending deformations of a vertical milling machine. IEEE Trans Ind Inf 16(3):1549–1558. https://doi.org/10.1109/tii.2019.2926991

    Article  Google Scholar 

  24. Liu K, Liu H, Li T et al (2019) Intelligentization of machine tools: comprehensive thermal error compensation of machine-workpiece system. Int J Adv Manuf Technol 102(9–12):3865–3877. https://doi.org/10.1007/s00170-019-03495-7

    Article  Google Scholar 

  25. Ma C, Zhao L, Mei X et al (2017) Thermal error compensation of high-speed spindle system based on a modified BP neural network. Int J Adv Manuf Technol 89(9–12):3071–3085. https://doi.org/10.1007/s00170-016-9254-4

    Article  Google Scholar 

  26. Heck JC, JR, Salem FM (2017) Simplified minimal gated unit variations for recurrent neural networks. In: Proceedings of the 60th IEEE international midwest symposium on circuits and systems (MWSCAS), Tufts Univ, Medford Somerville Campus, Boston, MA, F 2017 Aug 06-09, 2017. http://www.researchgate.net/publication/301957289_Minimal_Gated_Unit_for_Recurrent_Neural_Networks

  27. Liao C, Wang J, Xie Q et al (2020) Synergistic use of multi-temporal RADARSAT-2 and VEN mu S data for crop classification based on 1D convolutional neural network. Remote Sens 12(5):832. https://doi.org/10.3390/rs12050832

    Article  Google Scholar 

  28. Wu L, Ma J, Zhao YH et al (2021) Apple detection in complex scene using the improved YOLOv4 model. Agron Basel 11(3):476. https://doi.org/10.3390/agronomy11030476

    Article  Google Scholar 

  29. Sun DC, Wu JL, Huang H et al (2021) Prediction of short-time rainfall based on deep learning. Math Probl Eng. https://doi.org/10.1155/2021/6664413

    Article  Google Scholar 

  30. Wen L, Li XY, Gao L (2020) A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput Appl 32(10):6111–6124. https://doi.org/10.1007/s00521-019-04097-w

    Article  MathSciNet  Google Scholar 

  31. Szegedy C, Ioffe S, Vanhoucke V et al (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: Proceedings of the 31st AAAI conference on artificial intelligence, San Francisco, CA, 2017. https://arxiv.org/abs/1602.07261

  32. Ferrer AJ, Marques JM, Jorba J (2019) Towards the decentralised cloud: survey on approaches and challenges for mobile, ad hoc, and edge computing. ACM Comput Surv 51(6):1–36. https://doi.org/10.1145/3243929

    Article  Google Scholar 

  33. Martinov GM, Ljubimov AB, Martinova LI (2020) From classic CNC systems to cloud-based technology and back. Robot Comput Integr Manuf 63:101927. https://doi.org/10.1016/j.rcim.2019.101927

    Article  Google Scholar 

  34. De Araujo PRM, Lins RG (2021) Cloud-based approach for automatic CNC workpiece origin localization based on image analysis. Robot Comput Integr Manuf 68:102090. https://doi.org/10.1016/j.rcim.2020.102090

    Article  Google Scholar 

  35. Elbamby MS, Perfecto C, Liu CF et al (2019) Wireless edge computing with latency and reliability guarantees. Proc IEEE 107(8):1717–1737. https://doi.org/10.1109/jproc.2019.2917084

    Article  Google Scholar 

  36. Wang SQ, Tuor T, Salonidis T et al (2019) Adaptive federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 37(6):1205–1221. https://doi.org/10.1109/jsac.2019.2904348

    Article  Google Scholar 

  37. Xu XL, Zhang XY, Gao HH et al (2020) BeCome: Blockchain-enabled computation offloading for IoT in mobile edge computing. IEEE Trans Industr Inf 16(6):4187–4195. https://doi.org/10.1109/tii.2019.2936869

    Article  Google Scholar 

  38. Kang Huimin, Chen Xiaoan, Chen Wenqu, et al 2011 Thermal analysis and experimental study of high-speed electric spindle bearing mechanical strength. J Mech Strength 33(06):797–802. https://doi.org/10.16579/j.issn.1001.9669.2011.06.016

  39. Burton RA, Staph HE (1967) Thermally activated seizure of angular contact bearings. ASLE Trans 10 (17): 408–417. Wear 11(5): 408–417 (19+698). https://doi.org/10.1080/05698196708972200

  40. Che Z, Purushotham S, Cho K et al (2018) Recurrent neural networks for multivariate time series with missing values. Sci Rep 8:6085. https://doi.org/10.1038/s41598-018-24271-9

    Article  Google Scholar 

  41. Choi E, Schuetz A, Stewart WF et al (2017) Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24(2):361–370. https://doi.org/10.1093/jamia/ocw112

    Article  Google Scholar 

  42. Mou L, Ghamisi P, Zhu XX (2017) Deep recurrent neural networks for hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(7):3639–3655. https://doi.org/10.1109/tgrs.2016.2636241

    Article  Google Scholar 

  43. Liu JL, Ma C, Gui HQ et al (2022) Transfer learning-based thermal error prediction and control with deep residual LSTM network. Knowl Based Syst 237:107704. https://doi.org/10.1016/j.knosys.2021.107704

    Article  Google Scholar 

  44. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/tpami.2016.2644615

    Article  Google Scholar 

  45. Dong C, Loy CC, He K et al (2016) Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell 38(2):295–307. https://doi.org/10.1109/tpami.2015.2439281

    Article  Google Scholar 

  46. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. https://doi.org/10.1145/3065386

    Article  Google Scholar 

  47. Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

    Article  Google Scholar 

  48. Ji S, Xu W, Yang M et al (2013) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231. https://doi.org/10.1109/tpami.2012.59

    Article  Google Scholar 

  49. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  50. He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. In: 2016 IEEE Conference on computer vision and pattern recognition (CVPR), Las Vegas, NV, USA, 2016, pp 770–778. https://arxiv.org/abs/1512.03385

  51. Chi M, Jun Y, Xuesong M et al (2015) Thermal error modeling of spindle based on genetic algorithm and BP network. Comput Integr Manuf Syst 21(10):2627–2636

    Google Scholar 

  52. Cao K, Hu S, Shi Y et al (2021) A survey on edge and edge-cloud computing assisted cyber-physical systems. IEEE Trans Ind Inf 17(11):7806–7819. https://doi.org/10.1109/tii.2021.3073066

    Article  Google Scholar 

  53. Deng S, Zhao H, Fang W et al (2020) Edge intelligence: the confluence of edge computing and artificial intelligence. IEEE Internet Things J 7(8):7457–7469. https://doi.org/10.1109/jiot.2020.2984887

    Article  Google Scholar 

  54. Jiang C, Fan T, Gao H et al (2020) Energy aware edge computing: a survey. Comput Commun 151:556–580. https://doi.org/10.1016/j.comcom.2020.01.004

    Article  Google Scholar 

  55. Rimal BP, Maier M, Satyanarayanan M (2018) Experimental testbed for edge computing in fiber-wireless broadband access networks. IEEE Commun Mag 56(8):160–167. https://doi.org/10.1109/mcom.2018.1700793

    Article  Google Scholar 

  56. Sulieman NA, Ricciardi-Celsi L, Li W et al (2022) Edge-oriented computing: a survey on research and use cases. Energies 15(2):452. https://doi.org/10.3390/en15020452

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (52275474, 51905057), the Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2019jcyj-msxmX0050), the Fundamental Research Funds for the Central Universities (2020CDJQY-A036), the Venture & Innovation Support Program for Chongqing Overseas Returnees (cx2019054), State Key Laboratory for Manufacturing Systems Engineering (sklms2020016), the Postgraduate Research and Innovation Project of Chongqing (CYS22012), and the Postgraduate Research and Innovation Project of Chongqing (CYS22013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Ma.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product or company that could be construed as influencing the position presented in, or the review of, the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, F., Ma, C., Liu, J. et al. Thermal error prediction and control method combining residual-based one-dimensional convolution-minimum gate unit model with physical-data-edge-cloud terminal architecture. Neural Comput & Applic 35, 15477–15502 (2023). https://doi.org/10.1007/s00521-023-08553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-023-08553-6

Keywords

Navigation