Skip to main content
Log in

SL-Net: self-learning and mutual attention-based distinguished window for RGBD complex salient object detection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Significant improvement has been noticed in salient object detection by multi-modal cross-complementary fusion between Depth and RGB features. The multi-modal feature extracting backbone of existing networks cannot extract complex RGB and color images effectively, which limits the performance of salient object detection in complex and challenging situations. In this paper, a composite backbone network with a mutual attention-based distinguished window is proposed to enhance the salient region and minimize the non-salient region. The distinguished window based on the channel-wise, spatial, mutual, and feature-level attention is inserted in each encoder stage to enhance the saliency features. Finally, a novel self-learning-based decoder, which is capable of utilizing multi-level features is designed to get the accurately dense prediction. The multi-level fusion is guided by deep global localized features. The performance of salient object detection could significantly be enhanced in this way. The extensive comparative and ablation experiments for the proposed framework have been conducted on the seven publicly available datasets for visual saliency. Experimental results have illustrated the effectiveness of the proposed framework and show better performance in comparison with the closely related state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hong S, You T, Kwak S, Han B (2015) In: International conference on machine learning (PMLR), pp. 597–606

  2. Jerripothula KR, Cai J, Yuan J (2016) Image co-segmentation via saliency co-fusion. IEEE Trans Multimedia 18(9):1896–1909

    Article  Google Scholar 

  3. Durand T, Mordan T, Thome N, Cord M (2017) In: IEEE conference on computer vision and pattern recognition (CVPR 2017)

  4. Zhao R, Ouyang W, Wang X (2013) In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3586–3593

  5. Kompella A, Kulkarni RV (2021) A semi-supervised recurrent neural network for video salient object detection. Neural Comput Appl 33(6):2065–2083

    Article  Google Scholar 

  6. Dong S, Gao Z, Pirbhulal S, Bian GB, Zhang H, Wu W, Li S (2020) Iot-based 3d convolution for video salient object detection. Neural Comput Appl 32(3):735–746

    Article  Google Scholar 

  7. Wang W, Shen J (2017) In: Proceedings of the IEEE international conference on computer vision , pp. 2186–2194

  8. Cheng Y, Fu H, Wei X, Xiao J, Cao X (2014) In: Proceedings of international conference on internet multimedia computing and service (ACM), p. 23

  9. Ju R, Ge L, Geng W, Ren T, Wu G (2014) In: 2014 IEEE international conference on image processing (ICIP) (IEEE), pp. 1115–1119

  10. Cong R, Lei J, Zhang C, Huang Q, Cao X, Hou C (2016) Saliency detection for stereoscopic images based on depth confidence analysis and multiple cues fusion. IEEE Signal Process Lett 23(6):819–823

    Article  Google Scholar 

  11. Wang N, Gong X (2019) Adaptive fusion for rgb-d salient object detection. IEEE Access 7:55277–55284

    Article  Google Scholar 

  12. Chen S, Fu Y (2020) In European conference on computer vision (Springer), pp. 520–538

  13. Liu N, Zhang N, Han J (2020) In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp. 13,756–13,765

  14. Fu K, Fan D.P, Ji G.P, Zhao Q (2020) In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 3052–3062

  15. Li C, Cong R, Piao Y, Xu Q, Loy CC (2020) In: European conference on computer vision (Springer), pp. 225–241

  16. Zhang J, Fan D.P, Dai Y, Anwar S, Saleh F.S, Zhang T, Barnes N (2020) In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp. 8582–8591

  17. Chen H, Li Y (2019) Three-stream attention-aware network for rgb-d salient object detection. IEEE Trans Image Process 28(6):2825–2835

    Article  MathSciNet  MATH  Google Scholar 

  18. Fan DP, Lin Z, Zhang Z, Zhu M, Cheng MM (2020) Rethinking rgb-d salient object detection: models, data sets, and large-scale benchmarks. IEEE Trans Neural Networks Learn Syst 32(5):2075–2089

    Article  Google Scholar 

  19. Zhu C, Li G, Wang W, Wang R (2017) In: IEEE international conference on computer vision workshop (ICCVW)

  20. Feng D, Barnes N, You S, McCarthy C (2016) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2343–2350

  21. Song H, Liu Z, Du H, Sun G, Le Meur O, Ren T (2017) Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans Image Process 26(9):4204–4216

    Article  MathSciNet  MATH  Google Scholar 

  22. Kienzle W, Franz MO, Schölkopf B, Wichmann FA (2009) Center-surround patterns emerge as optimal predictors for human saccade targets. J Vis 9(5):7–7

    Article  Google Scholar 

  23. Zhu W, Liang S, Wei Y, Sun J (2014) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2814–2821

  24. Zhang J, Sclaroff S (2016) Exploiting surroundedness for saliency detection: a boolean map approach. IEEE Trans Pattern Anal Mach Intell 38(5):889–902

    Article  Google Scholar 

  25. Zhou X, Wang Y, Zhu Q, Xiao C, Lu X (2019) Ssg: superpixel segmentation and grabcut-based salient object segmentation. Vis Comput 35(3):385–398

    Article  Google Scholar 

  26. Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202

    Article  Google Scholar 

  27. Zhong G, Liu R, Cao J, Su Z (2016) A generalized nonlocal mean framework with object-level cues for saliency detection. Vis Comput 32(5):611–623

    Article  Google Scholar 

  28. Niu Y, Geng Y, Li X, Liu F (2012) In: 2012 IEEE conference on computer vision and pattern recognition (IEEE), pp. 454–461

  29. Qu L, He S, Zhang J, Tian J, Tang Y, Yang Q (2017) Rgbd salient object detection via deep fusion. IEEE Trans Image Process 26(5):2274–2285

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu Z, Shi S, Duan Q, Zhang W, Zhao P (2019) Salient object detection for rgb-d image by single stream recurrent convolution neural network. Neurocomputing 363:46–57

    Article  Google Scholar 

  31. Imamoglu N, Shimoda W, Zhang C, Fang Y, Kanezaki A, Yanai K, Nishida Y (2018) An integration of bottom-up and top-down salient cues on rgb-d data: saliency from objectness versus non-objectness. SIViP 12(2):307–314

    Article  Google Scholar 

  32. Han J, Chen H, Liu N, Yan C, Li X (2017) Cnns-based rgb-d saliency detection via cross-view transfer and multiview fusion. IEEE Trans Cybern 48(11):3171–3183

    Article  Google Scholar 

  33. Luo A, Li X, Yang F, Jiao Z, Cheng H, Lyu S (2020) In: European conference on computer vision (Springer), pp. 346–364

  34. Chen H, Li Y (2018) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 3051–3060

  35. Hou Q, Cheng M.M, Hu X, Borji A, Tu Z, Torr P.H (2017) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 3203–3212

  36. Zhao J.X, Cao Y, Fan D.P, Cheng M.M, Li X.Y, Zhang L (2019) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 3927–3936

  37. Zhu C, Cai X, Huang K, Li T.H, Li G (2019) In: 2019 IEEE international conference on multimedia and expo (ICME) (IEEE), pp. 199–204

  38. Zhao X, Zhang L, Pang Y, Lu H, Zhang L (2020) In: European conference on computer vision (Springer), pp. 646–662

  39. Chen Z, Cong R, Xu Q, Huang Q (2021) Dpanet: depth potentiality-aware gated attention network for rgb-d salient object detection. IEEE Trans Image Process 30:7012–7024

    Article  Google Scholar 

  40. Ye L, Rochan M, Liu Z, Wang Y (2019) In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition , pp. 10,502–10,511

  41. Wang X, Girshick R, Gupta A, He K (2018) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 7794–7803

  42. Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  43. Piao Y, Ji W, Li J, Zhang M, Lu H (2019) In: Proceedings of the IEEE/CVF international conference on computer vision , pp. 7254–7263

  44. Shokri M, Harati A, Taba K (2020) Salient object detection in video using deep non-local neural networks. J Vis Commun Image Represent 68:102–769

    Article  Google Scholar 

  45. Hu J, Shen L, Sun G (2018) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 7132–7141

  46. Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhudinov R, Zemel R, Bengio Y (2015) In: International conference on machine learning (PMLR), pp. 2048–2057

  47. Yu S, Zhang B, Xiao J, Lim E.G (2021) In: Proceedings of the AAAI conference on artificial intelligence (AAAI) (AAAI Palo Alto, CA, USA)

  48. Ronneberger O, Fischer P, Brox T (2015) In: International Conference on Medical image computing and computer-assisted intervention (Springer), pp. 234–241

  49. Qin X, Zhang Z, Huang C, Gao C, Dehghan M, Jagersand M (2019) In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 7479–7489

  50. Peng H, Li B, Xiong W, Hu W, Ji R (2014) In: European conference on computer vision (Springer), pp. 92–109

  51. Zhu C, Li G (2017) In: Proceedings of the IEEE international conference on computer vision workshops, pp. 3008–3014

  52. Li N, Ye J, Ji Y, Ling H, Yu J (2014) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 2806–2813

  53. Fan D.P, Cheng M.M, Liu Y, Li T, Borji A (2017) In: Proceedings of the IEEE international conference on computer vision , pp. 4548–4557

  54. Borji A, Cheng MM, Jiang H, Li J (2015) Salient object detection: A benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  MATH  Google Scholar 

  55. Perazzi F, Krähenbühl P, Pritch Y, Hornung A (2012) In: Computer vision and pattern recognition (CVPR), 2012 IEEE conference on (IEEE), pp. 733–740

  56. Fan D.P, Gong C, Cao Y, Ren B, Cheng M.M, Borji A (2018) Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421

  57. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L et al (2019) Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst 32:8026–8037

    Google Scholar 

  58. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) In: Proceedings of the IEEE conference on computer vision and pattern recognition , pp. 1–9

  59. Al Azzeh J, Alhatamleh H, Alqadi ZA, Abuzalata MK (2016) Creating a color map to be used to convert a gray image to color image. Int J Comput Appl 153(2):31–34

    Google Scholar 

  60. Kingma D.P, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

  61. Ji W, Li J, Zhang M, Piao Y, Lu H (2020) In: Computer Vision–ECCV 2020: 16th european conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XVIII 16 (Springer), pp. 52–69

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Kant Singh.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.K., Srivastava, R. SL-Net: self-learning and mutual attention-based distinguished window for RGBD complex salient object detection. Neural Comput & Applic 35, 595–609 (2023). https://doi.org/10.1007/s00521-022-07772-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07772-7

Keywords

Navigation