Skip to main content

Advertisement

Log in

MOAVOA: a new multi-objective artificial vultures optimization algorithm

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a multi-objective version of the artificial vultures optimization algorithm (AVOA) for a multi-objective optimization problem called a multi-objective AVOA (MOAVOA). The inspirational concept of the AVOA is based on African vultures' lifestyles. Archive, grid, and leader selection mechanisms are used for developing the MOAVOA. The proposed MOAVOA algorithm is tested oneight real-world engineering design problems and seventeen unconstrained and constrained mathematical optimization problems to investigates its appropriateness in estimating Pareto optimal solutions. Multi-objective particle swarm optimization, multi-objective ant lion optimization, multi-objective multi-verse optimization, multi-objective genetic algorithms, multi-objective salp swarm algorithm, and multi-objective grey wolf optimizer are compared with MOAVOA using generational distance, inverted generational distance, maximum spread, and spacing performance indicators. This paper demonstrates that MOAVOA is capable of outranking the other approaches. It is concluded that the proposed MOAVOA has merits in solving challenging multi-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ghafori S, Gharehchopogh FS (2021) Advances in spotted hyena optimizer: a comprehensive survey, Arch Comput Methods Eng, pp 1–22

  2. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Book  Google Scholar 

  3. Kaveh A, Talatahari S, Khodadadi N (2020) Stochastic paint optimizer: theory and application in civil engineering, Eng Comput, pp 1–32

  4. Braik M, Sheta A, Al-Hiary H (2021) A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm. Neural Comput Appl 33(7):2515–2547

    Article  Google Scholar 

  5. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41

    Article  Google Scholar 

  6. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory, In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science, pp 39–43

  7. Oyelade ON, Ezugwu AE (2021) Ebola optimization search algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease, arXiv Prepr. arXiv:2106.01416

  8. Abdollahzadeh B, Soleimanian Gharehchopogh F, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 158:107408

    Google Scholar 

  9. Kaveh A, Khodadadi N, Azar BF, Talatahari S (2020) Optimal design of large-scale frames with an advanced charged system search algorithm using box-shaped sections, Eng Comput, pp 1–21

  10. Mohammadi-Balani A, Nayeri MD, Azar A, Taghizadeh-Yazdi M (2021) Golden eagle optimizer: a nature-inspired metaheuristic algorithm. Comput Ind Eng 152:107050

    Article  Google Scholar 

  11. Fathollahi-Fard AM, Hajiaghaei-Keshteli M, Tavakkoli-Moghaddam R (2020) Red deer algorithm (RDA): a new nature-inspired meta-heuristic. Soft Comput 24(19):14637–14665

    Article  Google Scholar 

  12. Kaveh A, Khodadadi N, Talatahari S (2021) A comparative study for the optimal design of steel structures using Css and Acss algorithms. Iran Univ Sci Technol 11(1):31–54

    Google Scholar 

  13. Ewees AA et al. (2021) Improved slime mould algorithm based on firefly algorithm for feature selection: a case study on QSAR model, Eng Comput, pp 1–15

  14. Şahin CB, Dinler ÖB, Abualigah L (2021) Prediction of software vulnerability based deep symbiotic genetic algorithms: phenotyping of dominant-features, Appl Intell, pp 1–17

  15. Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26(6):369–395

    Article  MathSciNet  MATH  Google Scholar 

  16. Dhiman G (2020) MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems. Appl Intell 50(1):119–137

    Article  Google Scholar 

  17. Coello CAC (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell Mag 1(1):28–36

    Article  Google Scholar 

  18. Al-Tashi Q, Abdulkadir SJ, Rais HM, Mirjalili S, Alhussian H (2020) Approaches to multi-objective feature selection: a systematic literature review. IEEE Access 8:125076–125096

    Article  Google Scholar 

  19. Khodadadi N, Azizi M, Talatahari S, Sareh P (2021) Multi-objective crystal structure algorithm (MOCryStAl): introduction and performance evaluation. IEEE Access 9:117795–117812

    Article  Google Scholar 

  20. Abdollahzadeh B, Gharehchopogh FS (2021) A multi-objective optimization algorithm for feature selection problems, Eng Comput, pp 1–19

  21. Mohammadzadeh A, Masdari M, Gharehchopogh FS, Jafarian A (2021) A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling. Cluster Comput 24(2):1479–1503

    Article  Google Scholar 

  22. Moradijoz M, Moghaddam MP, Haghifam MR, Alishahi E (2013) A multi-objective optimization problem for allocating parking lots in a distribution network. Int J Electr Power Energy Syst 46:115–122

    Article  Google Scholar 

  23. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  24. Tripathi PK, Bandyopadhyay S, Pal SK (2007) Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf Sci (Ny) 177(22):5033–5049

    Article  MathSciNet  MATH  Google Scholar 

  25. Gong D, Zhang Y, Qi C (2010) Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm. Int J Electr Power Energy Syst 32(6):607–614

    Article  Google Scholar 

  26. Zouache D, Moussaoui A, Ben Abdelaziz F (2018) A cooperative swarm intelligence algorithm for multi-objective discrete optimization with application to the knapsack problem. Eur. J. Oper. Res. 264(1):74–88

    Article  MathSciNet  MATH  Google Scholar 

  27. Li L, Wang W, Xu X (2017) Multi-objective particle swarm optimization based on global margin ranking. Inf Sci (Ny) 375:30–47

    Article  Google Scholar 

  28. Armano G, Farmani MR (2016) Multiobjective clustering analysis using particle swarm optimization. Expert Syst Appl 55:184–193

    Article  Google Scholar 

  29. Mousa AA, El-Shorbagy MA, Abd-El-Wahed WF (2012) Local search based hybrid particle swarm optimization algorithm for multiobjective optimization. Swarm Evol Comput 3:1–14

    Article  Google Scholar 

  30. Özkış A, Babalık A (2017) A novel metaheuristic for multi-objective optimization problems: the multi-objective vortex search algorithm. Inf Sci (Ny) 402:124–148

    Article  Google Scholar 

  31. Gong M, Jiao L, Du H, Bo L (2008) Multiobjective immune algorithm with nondominated neighbor-based selection. Evol Comput 16(2):225–255

    Article  Google Scholar 

  32. Angus D, Woodward C (2009) Multiple objective ant colony optimisation. Swarm Intell 3(1):69–85

    Article  Google Scholar 

  33. Babalik A, Ozkis A, Uymaz SA, Kiran MS (2018) A multi-objective artificial algae algorithm. Appl Soft Comput 68:377–395

    Article  Google Scholar 

  34. Mirjalili SZ, Mirjalili S, Saremi S, Faris H, Aljarah I (2018) Grasshopper optimization algorithm for multi-objective optimization problems. Appl Intell 48(4):805–820

    Article  Google Scholar 

  35. Lai X, Li C, Zhang N, Zhou J (2019) A multi-objective artificial sheep algorithm. Neural Comput Appl 31(8):4049–4083

    Article  Google Scholar 

  36. Elsayed S, Sarker R (2016) Differential evolution framework for big data optimization. Memetic Comput 8(1):17–33

    Article  Google Scholar 

  37. Abd Elaziz M, Li L, Jayasena KPN, Xiong S (2020) Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution. Appl Math Model 80:929–943

    Article  MathSciNet  MATH  Google Scholar 

  38. Liang J et al (2019) Multimodal multiobjective optimization with differential evolution. Swarm Evol Comput 44:1028–1059

    Article  Google Scholar 

  39. Tian Y, Cheng R, Zhang X, Cheng F, Jin Y (2017) An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput 22(4):609–622

    Article  Google Scholar 

  40. Santiago A, Dorronsoro B, Nebro AJ, Durillo JJ, Castillo O, Fraire HJ (2019) A novel multi-objective evolutionary algorithm with fuzzy logic based adaptive selection of operators: FAME. Inf Sci (Ny) 471:233–251

    Article  MathSciNet  MATH  Google Scholar 

  41. Yen GG, Lu H (2003) Dynamic multiobjective evolutionary algorithm: adaptive cell-based rank and density estimation. IEEE Trans Evol Comput 7(3):253–274

    Article  Google Scholar 

  42. Tan KC, Yang YJ, Goh CK (2006) A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans Evol Comput 10(5):527–549

    Article  Google Scholar 

  43. Kukkonen S, Lampinen J (2005) GDE3: the third evolution step of generalized differential evolution, In: 2005 IEEE congress on evolutionary computation, vol 1, pp 443–450

  44. Yang X-S, Karamanoglu M, He X (2014) Flower pollination algorithm: a novel approach for multiobjective optimization. Eng Optim 46(9):1222–1237

    Article  MathSciNet  Google Scholar 

  45. Yang X-S (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3(5):267–274

    Article  Google Scholar 

  46. Qu B-Y, Liang JJ, Suganthan PN (2012) Niching particle swarm optimization with local search for multi-modal optimization. Inf Sci (Ny) 197:131–143

    Article  Google Scholar 

  47. Mirjalili S, Saremi S, Mirjalili SM, Dos L, Coelho S (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119

    Article  Google Scholar 

  48. Tawhid MA, Savsani V (2019) Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput Appl 31(2):915–929

    Article  Google Scholar 

  49. Khodadadi N, Talatahari S, Dadras Eslamlou A (2022) MOTEO: a novel multi-objective thermal exchange optimization algorithm for engineering problems. Soft Comput 26:1–26

    Article  Google Scholar 

  50. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl Intell 46(1):79–95

    Article  Google Scholar 

  51. Sahoo A, Chandra S (2017) Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl Soft Comput 52:64–80

    Article  Google Scholar 

  52. Lu C, Gao L, Li X, Xiao S (2017) A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Eng Appl Artif Intell 57:61–79

    Article  Google Scholar 

  53. Zapotecas-Martinez S, Garcia-Najera A, Lopez-Jaimes A (2019) Multi-objective grey wolf optimizer based on decomposition. Expert Syst Appl 120:357–371

    Article  Google Scholar 

  54. Dhiman G, Kumar V (2018) Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl-Based Syst 150:175–197

    Article  Google Scholar 

  55. Tharwat A, Houssein EH, Ahmed MM, Hassanien AE, Gabel T (2018) MOGOA algorithm for constrained and unconstrained multi-objective optimization problems. Appl Intell 48(8):2268–2283

    Article  Google Scholar 

  56. Khalilpourazari S, Naderi B, Khalilpourazary S (2020) Multi-objective stochastic fractal search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Comput 24(4):3037–3066

    Article  Google Scholar 

  57. Li G, Wang W, Zhang W, Wang Z, Tu H, You W (2021) Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization. Swarm Evol Comput 62:100843

    Article  Google Scholar 

  58. Medhane DV, Sangaiah AK (2017) Search space-based multi-objective optimization evolutionary algorithm. Comput Electr Eng 58:126–143

    Article  Google Scholar 

  59. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408

    Article  Google Scholar 

  60. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  61. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195

    Article  Google Scholar 

  62. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7(3):205–230

    Article  Google Scholar 

  63. Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multiobjective optimization, In: Evolutionary multiobjective optimization, Springer, pp 105–145

  64. Coello CAC, Pulido GT (2005) Multiobjective structural optimization using a microgenetic algorithm. Struct Multidiscip Optim 30(5):388–403

    Article  Google Scholar 

  65. Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34(2):141–153

    Article  Google Scholar 

  66. Kurpati A, Azarm S, Wu J (2002) Constraint handling improvements for multiobjective genetic algorithms. Struct Multidiscip Optim 23(3):204–213

    Article  Google Scholar 

  67. Srinivasan N, Deb K (1994) Multi-objective function optimisation using non-dominated sorting genetic algorithm. Evol Comp 2(3):221–248

    Article  Google Scholar 

  68. Binh TT, Korn U (1997) MOBES: A multiobjective evolution strategy for constrained optimization problems, In: The third international conference on genetic algorithms (Mendel 97), 25, 27

  69. Osyczka A, Kundu S (1995) A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Struct Optim 10(2):94–99

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedali Mirjalili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: constrained multi-objective test problems

Appendix 1: constrained multi-objective test problems

1.1 CONSTR

There are two constraints and two design variables in this problem, which have a convex Pareto front.

$$\begin{array}{*{20}l} {{\text{Minimize}}:} \hfill & {f_{1} \left( x \right) = x_{1} } \hfill & {\left( {{\text{A}}.1} \right)} \hfill \\ {{\text{Minimize}}:~} \hfill & {f_{2} \left( x \right) = \left( {1 + x_{2} } \right)/x_{1} } \hfill & {\left( {{\text{A}}.2} \right)} \hfill \\ {{\text{where}}:} \hfill & {g_{1} \left( x \right)~ = 6 - \left( {x_{2} + 9x_{1} } \right)} \hfill & {\left( {{\text{A}}.3} \right)} \hfill \\ {} \hfill & {g_{2} \left( x \right)~ = \left( {1 + x_{2} - 9x_{1} } \right)} \hfill & {\left( {{\text{A}}.4} \right)} \hfill \\ {} \hfill & {0.1 \le x_{1} \le 1,0 \le x_{2} \le 5} \hfill & {} \hfill \\ \end{array}$$

1.2 SRN

Srinivas and Deb [67] suggested a continuous Pareto optimal front for the next problem as follows:

$$\begin{array}{*{20}l} {{\text{Minimize}}:} \hfill & {f_{1} \left( x \right)~ = ~2~ + ~\left( {x_{1} ~ - ~2} \right)^{2} + ~\left( {x_{2} ~ - ~1} \right)^{2} } \hfill & {\left( {A.5} \right)} \hfill \\ {{\text{Minimize}}:} \hfill & {f_{2} \left( x \right)~ = ~9x_{1} ~ - ~\left( {x_{2} ~ - ~1} \right)^{2} } \hfill & {\left( {A.6} \right)} \hfill \\ {{\text{where}}:} \hfill & {g_{1} \left( x \right)~ = x_{1}^{2} + x_{2}^{2} - 255} \hfill & {\left( {A.7} \right)} \hfill \\ {} \hfill & {g_{2} \left( x \right)~ = x_{1} - 3x_{2} + 10} \hfill & {\left( {A.8} \right)} \hfill \\ {} \hfill & { - 20 \le x_{1} \le 20, - 20 \le x_{2} \le 20} \hfill & {} \hfill \\ \end{array}$$

1.3 BNH

Binh and Korn [68] were the first to propose this problem as follows:

$$\begin{array}{*{20}l} {{\text{Minimize}}:} \hfill & {f_{1} \left( x \right) = 4x_{1}^{2} + 4x_{2}^{2} } \hfill & {\left( {{\text{A}}.9} \right)} \hfill \\ {{\text{Minimize}}:} \hfill & {f_{2} \left( x \right) = (x_{1} - 5)^{2} + (x_{2} - 5)^{2} } \hfill & {\left( {{\text{A}}.10} \right)} \hfill \\ {{\text{where}}:} \hfill & {g_{1} \left( x \right) = (x_{1} - 5)^{2} + x_{2}^{2} - 25} \hfill & {\left( {{\text{A}}.11} \right)} \hfill \\ {} \hfill & {g_{2} \left( x \right) = 7.7 - (x_{1} - 8)^{2} - (x_{2} + 3)^{2} } \hfill & {\left( {{\text{A}}.12} \right)} \hfill \\ {} \hfill & {0 \le x_{1} \le 5,0 \le x_{2} \le 3} \hfill & {} \hfill \\ \end{array}$$

1.4 OSY

Osyczka and Kundu [69] proposed five distinct regions for the OSY test issue. There are also six constraints and six design variables to consider as below:

Minimize: \(\begin{array}{*{20}l} {{\text{Minimize:}}} \hfill & {f_{1} \left( x \right) = x_{1}^{2} + x_{2}^{2} + x_{3}^{2} + x_{4}^{2} + x_{5}^{2} + x_{6}^{2} } \hfill & {\left( {{\text{A}}.13} \right)} \hfill \\ {{\text{Minimize}}:} \hfill & {f_{2} \left( x \right) = \left[ {25(x_{1} - 2)^{2} + (x_{2} - 1)^{2} + \left( {x_{3} - 1} \right) + (x_{4} - 4)^{2} + \left( {x_{5} - 1^{2} } \right)~} \right]} \hfill & {\left( {{\text{A}}.14} \right)} \hfill \\ {{\text{Where:}}} \hfill & {g_{1} \left( x \right)~ = \left( {2 - x_{1} - x_{2} } \right)} \hfill & {\left( {{\text{A}}.15} \right)} \hfill \\ {} \hfill & {g_{2} \left( x \right) = - 6 + x_{1} + x_{2} } \hfill & {\left( {{\text{A}}.16} \right)} \hfill \\ {} \hfill & {g_{3} \left( x \right) = - 2 - x_{1} + x_{2} } \hfill & {\left( {{\text{A}}.17} \right)} \hfill \\ {} \hfill & {g_{4} \left( x \right) = - 2 + x_{1} - 3x_{2} } \hfill & {\left( {{\text{A}}.18} \right)} \hfill \\ {} \hfill & {g_{5} \left( x \right) = - 4 + x_{4} + (x_{3} - 3)^{2} } \hfill & {\left( {{\text{A}}.19} \right)} \hfill \\ {} \hfill & {g_{6} \left( x \right) = 4 - x_{6} - (x_{5} - 3)^{2} } \hfill & {\left( {{\text{A}}.20} \right)} \hfill \\ {} \hfill & {0 \le x_{1} \le 10,~~~~~0 \le x_{2} \le 10,~~~~~1 \le x_{3} \le 5~} \hfill & {\left( {{\text{A}}.21} \right)} \hfill \\ {} \hfill & {0 \le x_{4} \le 6,~\quad 1 \le x_{5} \le 5,\quad 0 \le x_{6} \le 10} \hfill & {} \hfill \\ \end{array}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodadadi, N., Soleimanian Gharehchopogh, F. & Mirjalili, S. MOAVOA: a new multi-objective artificial vultures optimization algorithm. Neural Comput & Applic 34, 20791–20829 (2022). https://doi.org/10.1007/s00521-022-07557-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07557-y

Keywords

Navigation