Skip to main content

Advertisement

Log in

A survey of deep learning methods for multiple sclerosis identification using brain MRI images

  • Review
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is one of the most common inflammatory neurological diseases in young adults. There are three types of MS: (1) In relapsing remitting MS (RRMS), people have temporarily periods of relapses (attacks) for days or weeks, and then symptoms seem to disappear (remitting stage). (2) In secondary progressive MS (SPMS), symptoms worsen more steadily over time. Attacks (relapses) may occur time to time but the disease can progress in non-attack periods. It is estimated that half of the RRMS patients progress to SPMS in 10 years. (3) Primary progressive MS (PPMS) is characterized by slowly worsening symptoms from the beginning, with no relapses or remissions. For PPMS patients, disability progresses slowly. Researchers have found out that in the first year, MS causes more damage than following 5–10 years. Therefore, early diagnosis is vital. In this context, deep learning models started to be popular for assisting identification/diagnosis/classification of MS patients using magnetic resonance imaging (MRI). This paper provides an in-depth review of deep learning approaches for identification and classification of MS using brain MRI images. We discuss recent trends of deep learning methods for MS identification under three categories: CNN models, hybrid models (CNN with a classifier) and deep transfer learning models. Existing deep learning algorithms are analyzed and compared according to their architecture, image modality, pre-processing, feature extraction, classifier, dataset, categories and accuracy. This survey paper would provide a valuable source for researchers who are interested in state-of-the-art deep learning methods for MS identification using MRI images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Availability of data and material

(Data transparency) Not applicable.

Code availability

Not applicable.

References

  1. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372(9648):1502–1517. https://doi.org/10.1016/S0140-6736(08)61620-7

    Article  Google Scholar 

  2. Atlas of MS (2021) Number of people with MS. https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms

  3. Scalfari A, Neuhaus A, Degenhardt A, Rice GP, Muraro PA, Daumer M, Ebers GC (2010) The natural history of multiple sclerosis: a geographically based study 10: relapses and long-term disability. Brain J Neurol 133(Pt 7):1914–1929. https://doi.org/10.1093/brain/awq118

    Article  Google Scholar 

  4. Polman CH, Reingoldet SC, Edan G et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the McDonald criteria. Ann Neurol 58(6):840–846

    Article  Google Scholar 

  5. Abd-Ellah MK, Awad AI, Khalaf AAM, Hamed HFA (2019) A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magn Resonan Imaging 61:300–318. ISSN 0730-725X. https://doi.org/10.1016/j.mri.2019.05.028

  6. Mohan G, Monica Subashini M (2018) MRI based medical image analysis: survey on brain tumor grade classification. Biomed Signal Process Control 39:139–161. ISSN 1746-8094. https://doi.org/10.1016/j.bspc.2017.07.007

  7. Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–127. https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  8. Yamanakkanavar N, Choi JY, Lee B (2020) MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer’s disease: a survey. Sensors 20:3243. https://doi.org/10.3390/s20113243

    Article  Google Scholar 

  9. Lu S, Lu Z, Zhang Y-D (2019) Pathological brain detection based on AlexNet and transfer learning. J Comput Sci 30:41–47. https://doi.org/10.1016/j.jocs.2018.11.008

    Article  Google Scholar 

  10. Kim H, Lee Y, Kim Y-H et al (2020) Deep learning-based method to differentiate neuromyelitis optica spectrum disorder from multiple sclerosis. Front Neurol. https://doi.org/10.3389/fneur.2020.599042

    Article  Google Scholar 

  11. Alpaydin E (2020) Introduction to machine learning, 4th edn. MIT Press, Cambridge

    MATH  Google Scholar 

  12. Alpaydin E (2021) Machine learning—the new AI. MIT Press, Cambridge

    Book  Google Scholar 

  13. Eshaghi A, Riyahi-Alam S, Saeedi R, Roostaei T, Nazeri A, Aghsaei A et al (2015) Classification algorithms with multi-modal data fusion could accurately distinguish neuromyelitis optica from multiple sclerosis. NeuroImage Clin 7:306–314. https://doi.org/10.1016/j.nicl.2015.01.001

    Article  Google Scholar 

  14. Wroge TJ, Özkanca Y, Demiroglu C, Si D, Atkins DC, Ghomi RH (2018) Parkinson’s disease diagnosis using machine learning and voice. In: 2018 IEEE signal processing in medicine and biology symposium (SPMB), pp 1–7. https://doi.org/10.1109/SPMB.2018.8615607

  15. Alcaide-Leon P, Dufort P, Geraldo AF, Alshafai L, Maralani PJ, Spears J et al (2017) Differentiation of enhancing glioma and primary central nervous system lymphoma by texture-based machine learning. Am J Neuroradiol 38:1145–1150. https://doi.org/10.3174/ajnr.A5173

    Article  Google Scholar 

  16. Tian J, Smith G, Guo H et al (2021) Modular machine learning for Alzheimer’s disease classification from retinal vasculature. Sci Rep 11:238. https://doi.org/10.1038/s41598-020-80312-2

    Article  Google Scholar 

  17. Gloria C, Giovanna CM, Matteo CR et al (2020) A machine learning approach for the differential diagnosis of alzheimer and vascular dementia fed by MRI selected features. Front Neuroinform. https://doi.org/10.3389/fninf.2020.00025

    Article  Google Scholar 

  18. Lee H, Lee EJ, Ham S, Lee HB, Lee JS, Kwon SU et al (2020) Machine learning approach to identify stroke within 4.5 hours. Stroke 51:860–866. https://doi.org/10.1161/STROKEAHA.119.027611

    Article  Google Scholar 

  19. Salvatore C, Cerasa A, Castiglioni I, Gallivanone F, Augimeri A, Lopez M et al (2014) Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and progressive supranuclear palsy. J Neurosci Methods 222:230–237. https://doi.org/10.1016/j.jneumeth.2013.11.016

    Article  Google Scholar 

  20. Khan MA, Ashraf I, Alhaisoni M, Damaševičius R, Scherer R, Rehman A, Bukhari S (2020) Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists. Diagnostics (Basel, Switzerland) 10(8):565. https://doi.org/10.3390/diagnostics10080565

    Article  Google Scholar 

  21. Faezeh M, Alain L-U, Costas P, Vassili S (2021) Machine learning approaches in study of multiple sclerosis disease through magnetic resonance images. Front Immunol. https://doi.org/10.3389/fimmu.2021.700582

    Article  Google Scholar 

  22. Tadayon E, Khayati RM, Karami V, Nabavi SM (2016) A novel method for automatic classification of multiple sclerosis lesion subtypes using diffusion tensor MR images. Biomed Eng Appl Basis Commun 28(5):1650038

    Article  Google Scholar 

  23. Fooladi M, Sharini H, Masjoodi S, Khodamoradi EA (2018) A novel classification method using effective neural network and quantitative magnetization transfer imaging of brain white matter in relapsing remitting multiple sclerosis. J Biomed Phys Eng 8(4):409–422

    Google Scholar 

  24. Stamile C, Kocevar G, Hannoun S et al (2015) A graph based classification method for multiple sclerosis clinical forms using support vector machine. In: Medical learning meets medical imaging, pp 57–64

  25. Zhang Y, Lu S, Zhou X et al (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simul Digit Image Process Med Appl 92(9):861–871

    Google Scholar 

  26. Zhang Y, Lu S, Zhou X et al (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. SIMULATION 92(2):861–871

    Article  Google Scholar 

  27. Wang SH, Zhan TM, Chen Y et al (2016) Multiple sclerosis detection based on biorthogonal wavelet transform, RBF kernel principal component analysis, and logistic regression. IEEE Access 4:7567–7576

    Article  Google Scholar 

  28. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  29. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

    MATH  Google Scholar 

  30. Black E (2019) Machine learning A-Z: machine learning—deep learning with neural network

  31. Liu J, Pan Y, Li M, Chen Z, Tang L, Lu C, Wang J (2018) Applications of deep learning to MRI images: a survey. Big Data Min Anal 1(1):1–18

    Article  Google Scholar 

  32. Litjens G et al (2017) A survey on deep learning in medical image analysis. arXiv: https://arxiv.org/1702.05747v2 [cs.CV]

  33. Işın A, Direkoğlu C, Şah M (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324

    Article  Google Scholar 

  34. Kim M, Yun J, Cho Y, Shin K, Jang R, Bae HJ, Kim N (2019) Deep learning in medical imaging. Neurospine 16(4):657–668. https://doi.org/10.14245/ns.1938396.198. Epub 2019 Dec 31. Erratum in: Neurospine. 2020 Jun;17(2):471–472. PMID: 31905454; PMCID: PMC6945006

  35. Zeng C, Gu L, Liu Z, Zhao S (2020) Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front Neuroinform. https://doi.org/10.3389/fninf.2020.610967

    Article  Google Scholar 

  36. Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, Khozeimeh F, Gorriz JM, Heras J, Panahiazar M, Nahavandi S, Acharya UR (2021) Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: a review. https://arxiv.org/abs/2105.04881

  37. Shanmuganathan M, Almutairi S, Aborokbah MM, Ganesan S, Ramachandran V (2020) Review of advanced computational approaches on multiple sclerosis segmentation and classification. IET Signal Process 14(6):333–341. https://doi.org/10.1049/iet-spr.2019.0543

    Article  Google Scholar 

  38. Mechrez R, Goldberger J, Greenspan H (2016) Patch-based segmentation with spatial consistency: application to MS lesions in brain MRI. Int J Biomed Imaging 2016:13. https://doi.org/10.1155/2016/7952541

    Article  Google Scholar 

  39. Wachinger C, Reuter M, Klein T (2018) DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170:434–445

    Article  Google Scholar 

  40. Chen H, Dou Q, Yu L, Qin J, Heng P-A (2018) VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images. Neuroimage 170:446–455

    Article  Google Scholar 

  41. Wu Y, Warfield SK, Tan IL, Wells WM, Meier DS, van Schijndel RA, Barkhof F, Guttmann CR (2006) Automated segmentation of multiple sclerosis lesion subtypes with multichannel MRI. Neuroimage 32:1205–1215

    Article  Google Scholar 

  42. Cetin O, Seymen V, Sakoglu U (2020) Multiple sclerosis lesion detection in multimodal MRI using simple clustering-based segmentation and classification. Inform Med Unlocked 20:100409. https://doi.org/10.1016/j.imu.2020.100409

    Article  Google Scholar 

  43. Fenneteau A, Bourdon P, Helbert D, Fernandez-Maloigne C, Habas C, Guillevin R (2020) Learning a CNN on multiple sclerosis lesion segmentation with self-supervision. In: 3D measurement and data processing, IS&T electronic imaging 2020 symposium. https://doi.org/10.2352/ISSN.2470-1173.2020.17.3DMP-002

  44. Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage 49(2):1524–1535. https://doi.org/10.1016/j.neuroimage.2009.09.005

    Article  Google Scholar 

  45. Zeng Z, Chen S, Yin L, Zwiggelaar R (2015) Unsupervised segmentation for multiple sclerosis lesions in multimodality magnetic resonance images. In: 2015 8th international conference on biomedical engineering and informatics (BMEI), pp 126–130. https://doi.org/10.1109/BMEI.2015.7401486

  46. Liu J, Smith CD, Chebrolu H (2009) Automatic multiple sclerosis detection based on integrated square estimation. In: IEEE computer society conference on computer vision and pattern recognition workshops, pp 31–38. https://doi.org/10.1109/CVPRW.2009.5204351

  47. Washimkar SP, Chede SD (2017) Prediction of multiple sclerosis in brain MRI images using hybrid segmentation. In: International conference on signal processing and communication (ICSPC), pp 234–239. https://doi.org/10.1109/CSPC.2017.8305845

  48. Samah Y, Salem Yassine B, Mohamed Naceur A (2018) Multiple sclerosis lesions detection from noisy magnetic resonance brain images tissue. In: International multi-conference on systems, signals devices (SSD), pp 240–245. https://doi.org/10.1109/SSD.2018.8570679

  49. McKinley R, Wepfer R, Grunder L et al (2020) Automatic detection of lesion load change in multiple sclerosis using convolutional neural networks with segmentation confidence. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2019.102104

    Article  Google Scholar 

  50. Yıldırım MS, Dandıl E (2020) Automatic detection of multiple sclerosis lesions using Mask R-CNN on magnetic resonance scans. IET Image Process 14(16):4277–4290. https://doi.org/10.1049/iet-ipr.2020.1128

    Article  Google Scholar 

  51. La Rosa F, Abdulkadir A, Fartaria MJ et al (2020) Multiple sclerosis cortical and WM lesion segmentation at 3T MRI: a deep learning method based on FLAIR and MP2RAGE. NeuroImage Clin 27:102335. ISSN 2213-1582. https://doi.org/10.1016/j.nicl.2020.102335

  52. Sepahvand NM, Arnold DL, Arbel T (2020) CNN detection of new and enlarging multiple sclerosis lesions from longitudinal MRI using subtraction images. In: 2020 IEEE 17th international symposium on biomedical imaging (ISBI), pp 127–130. https://doi.org/10.1109/ISBI45749.2020.9098554

  53. Valverde S, Salem M, Cabezas M, Pareto D et al (2019) One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage Clin 21:101638. ISSN 2213-1582. https://doi.org/10.1016/j.nicl.2018.101638

  54. Birenbaum A, Greenspan H (2017) Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Eng Appl Artif Intell 65:111–118, ISSN 0952-1976. https://doi.org/10.1016/j.engappai.2017.06.006

  55. Valverde S, Cabezas M, Roura E, González-Villà S et al (2017) Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155:159–168. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2017.04.034

  56. Gros C, De Leener B, Badji A et al (2019) Automatic segmentation of the spinal cord and intramedullary multiple sclerosis lesions with convolutional neural networks. NeuroImage 184:901–915. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2018.09.081

  57. Aslani S, Dayan M, Storelli L, Filippi M, Murino V, Rocca MA, Sona D (2019) Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. NeuroImage 196:1–15. ISSN 1053-8119. https://doi.org/10.1016/j.neuroimage.2019.03.068

  58. Loizou CP, Murray V, Pattichis MS, Seimenis I, Pantziaris M, Pattichis CS (2011) Multiscale amplitude-modulation frequency-modulation (AM–FM) texture analysis of multiple sclerosis in brain MRI images. IEEE Trans Inf Technol Biomed 15(1):119–129. https://doi.org/10.1109/TITB.2010.2091279

    Article  Google Scholar 

  59. Zhou X-X, Yang J-F, Sheng H, Wei L, Yan J, Sun P, Wang S-H (2016) Combination of stationary wavelet transform and kernel support vector machines for pathological brain detection. SIMULATION 92(9):827–837. https://doi.org/10.1177/0037549716629227

    Article  Google Scholar 

  60. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems, vol 25. Curran Associates Inc., Red Hook, pp 1097–1105

    Google Scholar 

  61. Voulodimos A, Doulamis N, Doulamis A, Protopapadakis E (2018) Deep learning for computer vision: a brief review. Comput Intell Neurosci 2018:13. https://doi.org/10.1155/2018/7068349

    Article  Google Scholar 

  62. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  63. Maleki M, Teshnehlab M, Nabavi M (2012) Diagnosis of multiple sclerosis (MS) using convolutional neural network (CNN) from MRIs. Glob J Med Plant Res 1(1):50–54

    Google Scholar 

  64. Yoo Y, Tang LYW, Brosch T, Li DKB, Kolind S, Vavasour I, Rauscher A, MacKay AL, Traboulsee A, Tam RC (2018) Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage Clin 17:169–178. ISSN 2213-1582. https://doi.org/10.1016/j.nicl.2017.10.015

  65. Roca P, Attye A, Colas L, Tucholka A, Rubini P, Cackowski S, Ding J, Budzik JF, Renard F, Doyle S et al (2020) Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagn Interv Imaging 101:795–802

    Article  Google Scholar 

  66. Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C (2018) A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B, Iliadis L, Maglogiannis I (eds) Artificial neural networks and machine learning—ICANN 2018, vol 11141. Springer, Cham. https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  67. Deepak S, Ameer PM (2019) Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med 111:103345. https://doi.org/10.1016/j.compbiomed.2019.103345

    Article  Google Scholar 

  68. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  69. Liu S, Deng W (2015) Very deep convolutional neural network based image classification using small training sample size. In: 2015 3rd IAPR Asian conference on pattern recognition (ACPR), pp 730–734. https://doi.org/10.1109/ACPR.2015.7486599

  70. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778. https://doi.org/10.1109/CVPR.2016.90

  71. Szegedy C et al (2015) Going deeper with convolutions. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9. https://doi.org/10.1109/CVPR.2015.7298594

  72. Zoph B, Vasudevan V, Shlens J, Le QV (2018) Learning transferable architectures for scalable image recognition. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 8697–8710

  73. Yoo Y, Tang WT, Brosch T, Li DKB, Metz L, Traboulsee A, Tam R (2016) Deep learning of brain lesion patterns for predicting future disease activity in patients with early symptoms of multiple sclerosis. In: Deep learning and data labeling for medical applications. DLMIA 2016, LABELS 2016, vol 10008. https://doi.org/10.1007/978-3-319-46976-8_10

  74. Yoo Y, Tang LYW, Li DKB, Metz L, Kolind S, Traboulsee AL, Tam RC (2019) Deep learning of brain lesion patterns and user-defined clinical and MRI features for predicting conversion to multiple sclerosis from clinically isolated syndrome. Comput Methods Biomech Biomed Eng Imaging Vis 7(3):250–259. https://doi.org/10.1080/21681163.2017.1356750

    Article  Google Scholar 

  75. Afzal H, Luo S, Ramadan S, Lechner-Scott J, Li J (2018) Automatic prediction of the conversion of clinically isolated syndrome to multiple sclerosis using deep learning. In: International conference on video and image processing, pp 231–235. https://doi.org/10.1145/3301506.3301526

  76. Zhang YD, Pan C, Sun J, Tang C (2018) Multiple sclerosis identification by convolutional neural network with dropout and parametric ReLU. J Comput Sci 28:1–10. https://doi.org/10.1016/j.jocs.2018.07.003

    Article  MathSciNet  Google Scholar 

  77. e-Health Laboratory (2021) MRI lesion segmentation in multiple sclerosis database. University of Cyprus. http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets

  78. Wang SH, Tang C, Sun J, Yang J, Huang C, Phillips P, Zhang YD (2018) Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization, dropout, and stochastic pooling. Front Neurosci 12:818. https://doi.org/10.3389/fnins.2018.00818

    Article  Google Scholar 

  79. Tousignant A, Lemaitre P, Precup D, Arnold DL, Arbel T (2018) Prediction of disease progression in multiple sclerosis patients using deep learning analysis of MRI data. In: International conference on medical imaging with deep learning

  80. Siar H, Teshnehlab M (2019) Diagnosing and classification tumors and MS simultaneous of magnetic resonance images using convolution neural network. In: Iranian joint congress on fuzzy and intelligent systems (CFIS), pp 1–4. https://doi.org/10.1109/CFIS.2019.8692148

  81. Marzullo A, Kocevar G, Stamile C, Durand-Dubief F, Terracina G, Calimeri F, Sappey-Marinier D (2019) Classification of multiple sclerosis clinical profiles via graph convolutional neural networks. Front Neurosci 13:594. https://doi.org/10.3389/fnins.2019.00594

    Article  Google Scholar 

  82. Alijamaat A, NikravanShalmani A, Bayat P (2020) Multiple sclerosis identification in brain MRI images using wavelet convolutional neural networks. Int J Imaging Syst Technol. https://doi.org/10.1002/ima.22492

    Article  Google Scholar 

  83. Alijamaat A, NikravanShalmani A, Bayat P (2021) Diagnosis of multiple sclerosis disease in brain MRI images using convolutional neural networks based on wavelet pooling. J Artif Intell Data Min JAIDM 9(2):161–168

    Google Scholar 

  84. Ye Z, George A, Wu AT, Niu X, Lin J, Adusumilli G, Naismith RT, Cross AH, Sun P, Song S-K (2020) Deep learning with diffusion basis spectrum imaging for classification of multiple sclerosis lesions. Ann Clin Transl Neurol 7:695–706. https://doi.org/10.1002/acn3.51037

    Article  Google Scholar 

  85. Zhang Y-D, Govindaraj VV, Tang C, Zhu W, Sun J (2019) High performance multiple sclerosis classification by data augmentation and AlexNet transfer learning model. J Med Imaging Health Inform 9(9):2012–2021. https://doi.org/10.1166/jmihi.2019.2692

    Article  Google Scholar 

  86. Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes J-D, Scheel M, Paul F, Ritter K (2019) Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. NeuroImage Clin 24:102003. https://doi.org/10.1016/j.nicl.2019.102003

    Article  Google Scholar 

  87. Wang S-H, Zhang Y-D (2020) DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Trans Multimedia Comput Commun Appl 16(2):19. https://doi.org/10.1145/3341095

    Article  Google Scholar 

  88. Soltani A, Nasri S (2020) Improved algorithm for multiple sclerosis diagnosis in MRI using convolutional neural network. IET Image Process 14(17):4507–4512. https://doi.org/10.1049/iet-ipr.2019.0366

    Article  Google Scholar 

  89. Narayana PA, Coronado I, Sujit SJ, Wolinsky JS, Lublin FD, Gabr RE (2020) Deep learning for predicting enhancing lesions in multiple sclerosis from noncontrast MRI. Radiology 294(2):398–404. https://doi.org/10.1148/radiol.2019191061

    Article  Google Scholar 

  90. Lopatina A, Ropele S, Sibgatulin R, Reichenbach JR, Güllmar D (2020) Investigation of deep-learning-driven identification of multiple sclerosis patients based on susceptibility-weighted images using relevance analysis. Front Neurosci 14:609468. https://doi.org/10.3389/fnins.2020.609468

    Article  Google Scholar 

  91. Shrwan R, Gupta A (2021) Classification of pituitary tumor and multiple sclerosis brain lesions through convolutional neural networks. In: International conference on artificial intelligence and machine learning, materials science and engineering, vol 1049, pp 012014

  92. Wang J, Lima D (2021) Multiple sclerosis detection via 6-layer stochastic pooling convolutional neural network and multiple-way data augmentation. STEMedicine 2(8):101. https://doi.org/10.37175/stemedicine.v2i8.101

    Article  Google Scholar 

  93. Jannat SA, Hoque T, Supti NA, Alam MA (2021) Detection of multiple sclerosis using deep learning. In: 2021 Asian conference on innovation in technology (ASIANCON), pp 1–8. https://doi.org/10.1109/ASIANCON51346.2021.9544601

  94. Xie S, Girshick R, Dollar P, Tu Z, He K (2017) Aggregated residual transformations for deep neural networks. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 1492–1500

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melike Sah.

Ethics declarations

Conflict of interest

Authors of this paper have conflict of interest with researchers in the following universities: Near East University, Middle East Technical University, Middle East Technical University—Northern Cyprus Campus, Trinity College Dublin, the University of Dublin, Dublin City University, University of Southampton, Eastern Mediterranean University.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sah, M., Direkoglu, C. A survey of deep learning methods for multiple sclerosis identification using brain MRI images. Neural Comput & Applic 34, 7349–7373 (2022). https://doi.org/10.1007/s00521-022-07099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-022-07099-3

Keywords

Navigation