Skip to main content

Advertisement

Log in

Brain stroke lesion segmentation using consistent perception generative adversarial network

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The state-of-the-art deep learning methods have demonstrated impressive performance in segmentation tasks. However, the success of these methods depends on a large amount of manually labeled masks, which are expensive and time-consuming to be collected. In this work, a novel consistent perception generative adversarial network (CPGAN) is proposed for semi-supervised stroke lesion segmentation. The proposed CPGAN can reduce the reliance on fully labeled samples. Specifically, a similarity connection module (SCM) is designed to capture the information of multi-scale features. The proposed SCM can selectively aggregate the features at each position by a weighted sum. Moreover, a consistent perception strategy is introduced into the proposed model to enhance the effect of brain stroke lesion prediction for the unlabeled data. Furthermore, an assistant network is constructed to encourage the discriminator to learn meaningful feature representations which are often forgotten during training stage. The assistant network and the discriminator are employed to jointly decide whether the segmentation results are real or fake. The CPGAN was evaluated on the Anatomical Tracings of Lesions After Stroke (ATLAS). The experimental results demonstrate that the proposed network achieves superior segmentation performance. In semi-supervised segmentation task, the proposed CPGAN using only two-fifths of labeled samples outperforms some approaches using full labeled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abraham N, Khan NM (2019) A novel focal tversky loss function with improved attention u-net for lesion segmentation. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 683–687. IEEE

  2. Bang D, Shim H (2018) Improved training of generative adversarial networks using representative features. arXiv preprint arXiv:1801.09195

  3. Baur C, Albarqouni S, Navab N (2017) Semi-supervised deep learning for fully convolutional networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 311–319. Springer

  4. Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H (2018) Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818. Cham

  5. Chen MT, Mahmood F, Sweer JA, Durr NJ (2019) Ganpop: generative adversarial network prediction of optical properties from single snapshot wide-field images. IEEE Trans Med Imag 39:1988

    Article  Google Scholar 

  6. Chen S, Bortsova G, Juárez AGU, van Tulder G, de Bruijne M (2019) Multi-task attention-based semi-supervised learning for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 457–465. Springer

  7. Chen T, Zhai X, Ritter M, Lucic M, Houlsby N (2019) Self-supervised gans via auxiliary rotation loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12154–12163

  8. Chen X, Lian C, Wang L, Deng H, Fung SH, Nie D, Thung KH, Yap PT, Gateno J, Xia JJ et al (2019) One-shot generative adversarial learning for mri segmentation of craniomaxillofacial bony structures. IEEE Trans Med Imag 39:787

    Article  Google Scholar 

  9. Cohen TS, Welling M (2016) Group equivariant convolutional networks. arXiv: Learning

  10. Dar SU, Yurt M, Karacan L, Erdem A, Erdem E, Çukur T (2019) Image synthesis in multi-contrast mri with conditional generative adversarial networks. IEEE Trans Med Imag 38(10):2375–2388

    Article  Google Scholar 

  11. Dieleman S, De Fauw J, Kavukcuoglu K (2016) Exploiting cyclic symmetry in convolutional neural networks. arXiv: Learning

  12. Dunnhofer M, Antico M, Sasazawa F, Takeda Y, Camps S, Martinel N, Micheloni C, Carneiro G, Fontanarosa D (2020) Siam-u-net: encoder-decoder siamese network for knee cartilage tracking in ultrasound images. Med Image Anal 60:101631

    Article  Google Scholar 

  13. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T et al (2014) Global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. The Lancet 383(9913):245–255

    Article  Google Scholar 

  14. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, Lu H (2019) Dual attention network for scene segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3146–3154

  15. Gadermayr M, Gupta L, Appel V, Boor P, Klinkhammer BM, Merhof D (2019) Generative adversarial networks for facilitating stain-independent supervised and unsupervised segmentation: a study on kidney histology. IEEE Trans Med Imag 38(10):2293–2302

    Article  Google Scholar 

  16. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. Adv Neural Inf Process Syst 27:2672–2680

    Google Scholar 

  17. Gu Z, Cheng J, Fu H, Zhou K, Hao H, Zhao Y, Zhang T, Gao S, Liu J (2019) Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans Med Imag 38(10):2281–2292

    Article  Google Scholar 

  18. Hasan S, Linte CA (2019) U-netplus: a modified encoder-decoder u-net architecture for semantic and instance segmentation of surgical instrument. arXiv preprint arXiv:1902.08994

  19. Hiasa Y, Otake Y, Takao M, Ogawa T, Sugano N, Sato Y (2019) Automated muscle segmentation from clinical ct using bayesian u-net for personalized musculoskeletal modeling. IEEE Trans Med Imag 39:1030

    Article  Google Scholar 

  20. Hu S, Shen Y, Wang S, Lei B (2020) Brain mr to pet synthesis via bidirectional generative adversarial network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 698–707. Springer, Cham

  21. Hu S, Yu W, Chen Z, Wang S (2020) Medical image reconstruction using generative adversarial network for alzheimer disease assessment with class-imbalance problem. In: 2020 IEEE 6th International Conference on Computer and Communications (ICCC), pp. 1323–1327. IEEE

  22. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708

  23. Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen YW, Wu J (2020) Unet 3+: A full-scale connected unet for medical image segmentation. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059. IEEE

  24. Johnson W, Onuma O, Owolabi M, Sachdev S (2016) Stroke: a global response is needed. Bull World Health Organ 94(9):634

    Article  Google Scholar 

  25. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ (2003) Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke 34(9):2181–2186

    Article  Google Scholar 

  26. Lei B, Xia Z, Jiang F, Jiang X, Ge Z, Xu Y, Qin J, Chen S, Wang T, Wang S (2020) Skin lesion segmentation via generative adversarial networks with dual discriminators. Med Image Anal 64:101716

    Article  Google Scholar 

  27. Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA (2018) H-denseunet: hybrid densely connected unet for liver and tumor segmentation from ct volumes. IEEE Trans Med Imag 37(12):2663–2674

    Article  Google Scholar 

  28. Li Z, Wang Y, Yu J (2017) Brain tumor segmentation using an adversarial network. In: International MICCAI brainlesion workshop, pp. 123–132. Springer, Cham

  29. Liew SL, Anglin JM, Banks NW, Sondag M, Ito KL, Kim H, Chan J, Ito J, Jung C, Khoshab N et al (2018) A large, open source dataset of stroke anatomical brain images and manual lesion segmentations. Scientif Data 5:180011

    Article  Google Scholar 

  30. Madani A, Moradi M, Karargyris A, Syeda-Mahmood T (2018) Semi-supervised learning with generative adversarial networks for chest x-ray classification with ability of data domain adaptation. In: 2018 IEEE 15th International symposium on biomedical imaging (ISBI 2018), pp. 1038–1042. IEEE

  31. Man Y, Huang Y, Feng J, Li X, Wu F (2019) Deep q learning driven ct pancreas segmentation with geometry-aware u-net. IEEE Trans Med Imag 38(8):1971–1980

    Article  Google Scholar 

  32. Menze BH, Van Leemput K, Lashkari D, Riklin-Raviv T, Geremia E, Alberts E, Gruber P, Wegener S, Weber MA, Székely G et al (2015) A generative probabilistic model and discriminative extensions for brain lesion segmentation-with application to tumor and stroke. IEEE Trans Med Imag 35(4):933–946

    Article  Google Scholar 

  33. Michael G, Laxmi G, Vitus A, Peter B, Barbara M (2019) Generative adversarial networks for facilitating stain-independent supervised and unsupervised segmentation: a study on kidney histology. IEEE Trans Med Imag 38:2293

    Article  Google Scholar 

  34. Mo LF, Wang SQ (2009) A variational approach to nonlinear two-point boundary value problems. Nonlinear Anal: Theory, Methods Appl 71(12):e834–e838

    Article  MathSciNet  Google Scholar 

  35. Nie D, Wang L, Gao Y, Lian J, Shen D (2018) Strainet: Spatially varying stochastic residual adversarial networks for mri pelvic organ segmentation. IEEE Trans Neural Netw Learn Syst 30(5):1552–1564

    Article  MathSciNet  Google Scholar 

  36. Oktay O, Schlemper J, Folgoc LL, Lee M, Heinrich M, Misawa K, Mori K, McDonagh S, Hammerla NY, Kainz B et al. (2018) Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999

  37. Qi K, Yang H, Li C, Liu Z, Wang M, Liu Q, Wang S (2019) X-net: Brain stroke lesion segmentation based on depthwise separable convolution and long-range dependencies. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 247–255. Springer

  38. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, pp. 234–241. Springer

  39. Sedai S, Mahapatra D, Hewavitharanage S, Maetschke S, Garnavi R (2017) Semi-supervised segmentation of optic cup in retinal fundus images using variational autoencoder. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 75–82. Springer

  40. Sharma A, Hamarneh G (2019) Missing mri pulse sequence synthesis using multi-modal generative adversarial network. IEEE Trans Med Imag 39(4):1170–1183

    Article  Google Scholar 

  41. Wang S, Hu Y, Shen Y, Li H (2018) Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning. Int J Neural Syst 28(02):1750036

    Article  Google Scholar 

  42. Wang S, Shen Y, Shi C, Yin P, Wang Z, Cheung PWH, Cheung JPY, Luk KDK, Hu Y (2018) Skeletal maturity recognition using a fully automated system with convolutional neural networks. IEEE Access 6:29979–29993

    Article  Google Scholar 

  43. Wang S, Wang H, Shen Y, Wang X (2018) Automatic recognition of mild cognitive impairment and alzheimers disease using ensemble based 3d densely connected convolutional networks. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 517–523. IEEE

  44. Wang S, Wang X, Hu Y, Shen Y, Yang Z, Gan M, Lei B (2020) Diabetic retinopathy diagnosis using multichannel generative adversarial network with semisupervision. IEEE Transactions on Automation Science and Engineering

  45. Wang SQ (2009) A variational approach to nonlinear two-point boundary value problems. Computers Math Appl 58(11–12):2452–2455

    Article  MathSciNet  Google Scholar 

  46. Wang SQ, He JH (2007) Variational iteration method for solving integro-differential equations. Phys Lett A 367(3):188–191

    Article  MathSciNet  Google Scholar 

  47. Wang SQ, He JH (2008) Variational iteration method for a nonlinear reaction-diffusion process. Int J Chem Reactor Eng 6(1):741

    Google Scholar 

  48. Wang Z, Zou N, Shen D, Ji S (2020) Non-local u-nets for biomedical image segmentation. In: Thirty-Fourth AAAI Conference on Artificial Intelligence

  49. Wolterink JM, Leiner T, Viergever MA, Išgum I (2017) Generative adversarial networks for noise reduction in low-dose ct. IEEE Trans Med Imag 36(12):2536–2545

    Article  Google Scholar 

  50. Worrall DE, Garbin SJ, Turmukhambetov D, Brostow GJ (2017) Harmonic networks: Deep translation and rotation equivariance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5028–5037

  51. Xue Y, Xu T, Zhang H, Long LR, Huang X (2018) Segan: adversarial network with multi-scale l 1 loss for medical image segmentation. Neuroinformatics 16(3–4):383–392

    Article  Google Scholar 

  52. Yang H, Huang W, Qi K, Li C, Liu X, Wang M, Zheng H, Wang S (2019) Clci-net: Cross-level fusion and context inference networks for lesion segmentation of chronic stroke. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 266–274. Springer

  53. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G (2018) Low-dose ct image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imag 37(6):1348–1357

    Article  Google Scholar 

  54. You S, Liu Y, Lei B, Wang S (2020) Fine perceptive gans for brain mr image super-resolution in wavelet domain. arXiv preprint arXiv:2011.04145

  55. Yu B, Zhou L, Wang L, Shi Y, Fripp J, Bourgeat P (2019) Ea-gans: edge-aware generative adversarial networks for cross-modality mr image synthesis. IEEE Trans Med Imag 38(7):1750–1762

    Article  Google Scholar 

  56. Yu W, Lei B, Ng MK, Cheung AC, Shen Y, Wang S (2021) Tensorizing gan with high-order pooling for alzheimer’s disease assessment. IEEE Trans Neural Netw Learn Syst 47:777

    Google Scholar 

  57. Zhang L, Gooya A, Frangi AF (2017) Semi-supervised assessment of incomplete lv coverage in cardiac mri using generative adversarial nets. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 61–68. Springer

  58. Zhang R, Zhao L, Lou W, Abrigo JM, Mok VC, Chu WC, Wang D, Shi L (2018) Automatic segmentation of acute ischemic stroke from dwi using 3-d fully convolutional densenets. IEEE Trans Med Imag 37(9):2149–2160

    Article  Google Scholar 

  59. Zhao M, Wang L, Chen J, Nie D, Cong Y, Ahmad S, Ho A, Yuan P, Fung SH, Deng HH, et al. (2018) Craniomaxillofacial bony structures segmentation from mri with deep-supervision adversarial learning. In: International conference on medical image computing and computer-assisted intervention, pp. 720–727. Springer

  60. Zheng H, Lin L, Hu H, Zhang Q, Chen Q, Iwamoto Y, Han X, Chen YW, Tong R, Wu J (2019) Semi-supervised segmentation of liver using adversarial learning with deep atlas prior. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 148–156. Springer

  61. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) Unet++: A nested u-net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 3–11. Springer

  62. Zhu Q, Du B, Yan P (2019) Boundary-weighted domain adaptive neural network for prostate mr image segmentation. IEEE Trans Med Imag 39:753

    Article  Google Scholar 

  63. Zhu W, Xiang X, Tran TD, Hager GD, Xie X (2018) Adversarial deep structured nets for mass segmentation from mammograms. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018), pp. 847–850. IEEE

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China under Grants 62172403 and 61872351, the International Science and Technology Cooperation Projects of Guangdong under Grant2019A050510030, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211 and the Shenzhen Key Basic Research Project under Grants JCYJ20180507182506416 and JCYJ20200109115641762.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Shen or Baiying Lei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, Z., You, S. et al. Brain stroke lesion segmentation using consistent perception generative adversarial network. Neural Comput & Applic 34, 8657–8669 (2022). https://doi.org/10.1007/s00521-021-06816-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06816-8

Keywords

Navigation