Skip to main content
Log in

Tackling the muon identification in water Cherenkov detectors problem for the future Southern Wide-field Gamma-ray Observatory by means of machine learning

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents several approaches to deal with the problem of identifying muons in a water Cherenkov detector with a reduced water volume and 4 PMTs. Different perspectives of information representation are used, and new features are engineered using the specific domain knowledge. As results show, these new features, in combination with the convolutional layers, are able to achieve a good performance avoiding overfitting and being able to generalise properly for the test set. The results also prove that the combination of state-of-the-art machine learning analysis techniques and water Cherenkov detectors with low water depth can be used to efficiently identify muons, which may lead to huge investment savings due to the reduction of the amount of water needed at high altitudes. This achievement can be used in further research to be able to discriminate between gamma and hadron-induced showers using muons as discriminant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. 1 Gigaelectronvolt (GeV) = \(10^{9}.\) eV.

    1 Teraelectronvolt (TeV) = \(10^{12}.\) eV.

  2. https://github.com/pacocp/spocu-pytorch.

  3. https://keras.io/api/optimizers/.

References

  1. LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L (1989) Handwritten digit recognition with a back-propagation network. Adv Neural Inf Process Syst 2:396

    Google Scholar 

  2. Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman DJ (2021) 1D convolutional neural networks and applications: a survey. Mech Syst Signal Process 151:107398. https://doi.org/10.1016/j.ymssp.2020.107398

    Article  Google Scholar 

  3. Erhan L, Ndubuaku M, Di Mauro M, Song W, Chen M, Fortino G, Bagdasar O, Liotta A (2021) Smart anomaly detection in sensor systems: a multi-perspective review. Inf Fusion 67:64. https://doi.org/10.1016/j.inffus.2020.10.001

    Article  Google Scholar 

  4. Banan A, Nasiri A, Taheri-Garavand A (2020) Deep learning-based appearance features extraction for automated carp species identification. Aquacult Eng 89:102053

    Article  Google Scholar 

  5. Fan Y, Xu K, Wu H, Zheng Y, Tao B (2020) Spatiotemporal modeling for nonlinear distributed thermal processes based on KL decomposition. MLP LSTM Netw IEEE Access 8:25111

    Article  Google Scholar 

  6. Shamshirband S, Rabczuk T, Chau KW (2019) A survey of deep learning techniques: application in wind and solar energy resources. IEEE Access 7:164650

    Article  Google Scholar 

  7. Sainath T.N, Vinyals O, Senior A, Sak H (2015) Convolutional, long short-term memory, fully connected deep neural networks, 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 4580–4584

  8. Peimankar A, Puthusserypady S (2021) DENS-ECG: A deep learning approach for ECG signal delineation. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113911

    Article  Google Scholar 

  9. Manzano M, Guillén A, Rojas I, Herrera LJ, Deep Learning Using EEG Data in Time and Frequency Domains for Sleep Stage Classification, in Advances in Computational Intelligence - 14th International Work-Conference on Artificial Neural Networks, IWANN 2017, Cadiz, Spain, June 14-16, 2017, Proceedings, Part I, Lecture Notes in Computer Science, vol. 10305, ed. by I. Rojas, G. Joya, A. Català (Springer, 2017), Lecture Notes in Computer Science, vol. 10305, pp. 132–141. https://doi.org/10.1007/978-3-319-59153-7_12

  10. Guillén A, Bueno A, Carceller J, Martínez-Velázquez J, Rubio G, Peixoto CT, Sanchez-Lucas P (2019) Deep learning techniques applied to the physics of extensive air showers. Astroparticle Phys 111:12. https://doi.org/10.1016/j.astropartphys.2019.03.001

    Article  Google Scholar 

  11. Guillén A, Martínez J, Carceller JM, Herrera LJ (2020) A comparative analysis of machine learning techniques for muon count in UHECR extensive air-showers. Entropy. https://doi.org/10.3390/e22111216

    Article  Google Scholar 

  12. Capistrán T, Torres I, Altamirano L (2015) New method for Gamma/Hadron separation in HAWC using neural networks, arXiv preprint arXiv:1508.04370

  13. Choma N, Monti F, Gerhardt L, Palczewski T, Ronaghi Z, Prabhat P, Bhimji W, Bronstein M, Klein S, Bruna J (2018) Graph neural networks for icecube signal classification, in 2018 17th IEEE international conference on machine learning and applications (ICMLA) (IEEE) , pp 386–391

  14. De Angelis A, Pimenta M (2018) Introduction to particle and astroparticle physics: multimessenger astronomy and its particle physics foundations, Introduction to particle and astroparticle physics: multimessenger astronomy and its particle physics foundations (Springer)

  15. Assis P, Conceição R, Pimenta M, Tomé B, Blanco A, Fonte P, Lopes L, de Almeida UB, Shellard R, Piazzoli BD, et al., LATTES: a novel detector concept for a gamma-ray experiment in the Southern hemisphere,

  16. Zuñiga-Reyes A, Hernández A, iranda-Aguilar A, Sandoval A, Martínez-Castro J, Alfaro R, Belmont E, León H, Vizcaya AP (2017) Detection of vertical muons with the HAWC water Cherenkov detectors and its application to gamma/hadron discrimination, arXiv preprint arXiv:1708.09500

  17. Barber A, Kieda D, Springer W, Collaboration H, et al., (2017) Detection of Near Horizontal Muons with the HAWC Observatory, in ICRC, 301, 512

  18. Zuo X et al (2015) Design and performances of prototype muon detectors of LHAASO-KM2A. Nucl Instrum Meth A 789:143. https://doi.org/10.1016/j.nima.2015.04.010

    Article  Google Scholar 

  19. Carrillo-Perez F, Herrera L, Carceller J, Guillén A (2021) Deep learning to classify ultra-high-energy cosmic rays by means of PMT signals, Neural Computing and Applications pp 1–17

  20. Assunção F, Correia J, Conceição R, Pimenta MJM, Tomé B, Lourenço N, Machado P (2019) Automatic design of artificial neural networks for gamma-ray detection. IEEE Access 7:110531

    Article  Google Scholar 

  21. Heck D, Knapp J, Capdevielle J, Schatz G, Thouw T (1998) A Monte Carlo code to simulate extensive air showers, Report FZKA 6019

  22. Agostinelli S, Allison J, Amako KA, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G et al (2003) GEANT4-a simulation toolkit. Nucl Inst Methods Phys Res Sect A Accelerat Spectro Detect Assoc Equip 506(3):250

    Article  Google Scholar 

  23. IEEE Transactions on Nuclear Science 53 No. 1, 270 (2006)

  24. Nuclear Instruments and Methods in Physics Research A 835, 186 (2016)

  25. Southern Wide field Gamma-ray Observatory (SWGO) https://www.swgo.org/SWGOWiki/doku.php

  26. González BS, Conceição R, Tomé B, Pimenta M, Herrera LJ, Guillen A (2020) Using convolutional neural networks for muon detection in WCD tank. J Phys Conf Series 1603:012024. https://doi.org/10.1088/1742-6596/1603/1/012024

    Article  Google Scholar 

  27. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Int Res 16(1):321–357

    MATH  Google Scholar 

  28. Guillén A, Todero C, Martínez JC, Herrera LJ (2018) A Preliminary Approach to Composition Classification of Ultra-High Energy Cosmic Rays, in international conference on applied physics, system science and computers (Springer) pp 196–202

  29. Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman D.J (2019) 1D convolutional neural networks and applications: A survey, arXiv preprint arXiv:1905.03554

  30. Carrillo-Perez F, Herrera LJ, Carceller JM, Guillén A (2019) Improving Classification of Ultra-High Energy Cosmic Rays Using Spacial Locality by Means of a Convolutional DNN, in international work-conference on artificial neural networks (Springer) pp 222–232

  31. Manzano M, Guillén A, Rojas I, Herrera L.J (2017) Combination of EEG Data Time and Frequency Representations in Deep Networks for Sleep Stage Classification, in international conference on intelligent computing (Springer ), pp 219–229

  32. Goodfellow I, Bengio Y, Courville A (2016)Deep Learning, Deep Learning (MIT Press). http://www.deeplearningbook.org

  33. Kisel’ák J, Lu Y, Švihra J, Szépe P, Stehlík M, (2020)“SPOCU”: scaled polynomial constant unit activation function, Neural Computing and Applications pp 1–17

  34. Khessiba S, Blaiech AG, Khalifa KB, Abdallah AB, Bedoui MH (2020) Innovative deep learning models for EEG-based vigilance detection, Neural Computing and Applications pp 1–17

  35. Kingma DP, Ba J (2014) Adam: a method for stochastic optimization, arXiv preprint arXiv:1412.6980

  36. Herrera LJ, Todero Peixoto CJ, Baños O, Carceller JM, Carrillo F, Guillén A (2020) Composition classification of ultra-high energy cosmic rays. Entropy 22(9):998

    Article  Google Scholar 

  37. Breiman L (2001) Random forests. Mach Learn 45(1):5

    Article  Google Scholar 

  38. Friedman JH (2001)Greedy function approximation: a gradient boosting machine, Annals of statistics pp 1189–1232

  39. Chen T, Guestrin C (2016)Xgboost: A scalable tree boosting system, in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining , pp 785–794

  40. Shahhosseini M, Hu G, Pham H (2019)Optimizing ensemble weights and hyperparameters of machine learning models for regression problems, arXiv preprint arXiv:1908.05287

  41. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341

    Article  MathSciNet  Google Scholar 

  42. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825

    MathSciNet  MATH  Google Scholar 

  43. Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10. https://doi.org/10.1109/MCSE.2007.58

    Article  Google Scholar 

  44. Chollet F et al. (2015)Keras. GitHub, https://github.com/fchollet/keras

  45. xgboost developers. (2020) XGBoost Python Package. https://xgboost.readthedocs.io/en/latest/python/index.html

Download references

Acknowledgements

We would like to thank to A. Bueno for all the support and useful discussions during the development of this work. The authors thank also for the financial support by OE - Portugal, FCT, I. P., under project PTDC/FIS-PAR/29158/2017. R. C. is grateful for the financial support by OE-Portugal, FCT, I. P., under DL57 /2016/cP1330/cT0002. A. G. is grateful for the financial support by the projects MINECO FPA2017-85197-P and PID2019-104676GB-C32. B.S.G. is grateful for the financial support by grant LIP/BI - 14/2020, under project IC&DT, POCI-01-0145-FEDER-029158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, B.S., Conceição, R., Pimenta, M. et al. Tackling the muon identification in water Cherenkov detectors problem for the future Southern Wide-field Gamma-ray Observatory by means of machine learning. Neural Comput & Applic 34, 5715–5728 (2022). https://doi.org/10.1007/s00521-021-06730-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06730-z

Keywords

Navigation