Skip to main content

A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images


Malaria is an infectious disease caused by Plasmodium parasites and is potentially human life-threatening. Children under 5 years old are the most vulnerable group with approximately one death every two minutes, accounting for more than 65% of all malaria deaths. The World Health Organization (WHO) encourages the research of appropriate methods to treat malaria through rapid and economical diagnostic. In this paper, we present a deep learning-based framework for diagnosing human malaria infection from microscopic images of thin blood smears. The framework is based on a direct segmentation and classification approach which relies on the analysis of the parasite itself. The framework permits to segment the Plasmodium parasite in the images and to predict its species among four dominant classes: P. Falciparum, P. Malaria, P. Ovale, and P. Vivax. A high potential of generalization with a competitive performance of our framework on inter-class data is demonstrated through an experimental study considering several datasets. Our source code is publicly available on

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. Abbas N, Saba T, Mohamad D, Rehman A, Almazyad AS, Al-Ghamdi JS (2018) Machine aided malaria parasitemia detection in giemsa-stained thin blood smears. Neural Comput Appl 29(3):803–818

    Article  Google Scholar 

  2. Abbas SS, Dijkstra T (2019) Malaria-detection-2019. Mendeley Data, V1,,

  3. Abbas SS, Dijkstra TM (2020) Detection and stage classification of plasmodium falciparum from images of giemsa stained thin blood films using random forest classifiers. Diagn Pathol 15(1):1–11

    Article  Google Scholar 

  4. Bailey JW, Williams J, Bain BJ, Parker-Williams J, Chiodini PL, General Haematology Task Force of the British Committee for Standards in Haematology (2013) of the British Committee for Standards in Haematology, Guideline: the laboratory diagnosis of malaria. Br J Haematol 163(5):573–580

  5. Caraballo H, King K (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg Med Pract 16(5):1–23

    Google Scholar 

  6. Chen J, Li F, Fu Y, Liu Q, Huang J, Li K (2017). A study of image segmentation algorithms combined with different image preprocessing methods for thyroid ultrasound images. IEEE, pp 1–5

  7. Choi D, Shallue CJ, Nado Z, Lee J, Maddison CJ, Dahl GE (2019) On empirical comparisons of optimizers for deep learning. arXiv:1910.05446

  8. Chollet F (2017) Xception: Deep learning with depthwise separable convolutions. pp 1251–1258

  9. Cowman AF, Healer J, Marapana D, Marsh K (2016) Malaria: biology and disease. Cell 167(3):610–624

    Article  Google Scholar 

  10. Das DK, Ghosh M, Pal M, Maiti AK, Chakraborty C (2013) Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45:97–106

    Article  Google Scholar 

  11. Delgado M, Molina A, Alferez S, Rodellar J, Merino A (2020) Dataset b: 331 digital images of mgg-stained blood smears from five malaria-infected patients. Mendeley Data V1, (2020)

  12. Delgado-Ortet M, Molina A, Alférez S, Rodellar J, Merino A (2020) A deep learning approach for segmentation of red blood cell images and malaria detection. Entropy 22(6):657

    Article  Google Scholar 

  13. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: A large-scale hierarchical image database. IEEE, pp 248–255

  14. Devi SS, Laskar RH, Sheikh SA (2018) Hybrid classifier based life cycle stages analysis for malaria-infected erythrocyte using thin blood smear images. Neural Comput Appl 29(8):217–235

    Article  Google Scholar 

  15. Durrhelm D, Becker P, Billinghurst K, Brink A (1997) Diagnostic disagreement-the lessons learnt from malaria diagnosis in mpumalanga. South African medical journal=. Suid-Afrikaanse tydskrif vir geneeskunde 87(5):609–611

    Google Scholar 

  16. Eelbode T, Bertels J, Berman M, Vandermeulen D, Maes F, Bisschops R, Blaschko MB (2020) Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index. IEEE Trans Med Imaging 39(11):3679–3690

    Article  Google Scholar 

  17. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. nature 542(7639):115–118

    Article  Google Scholar 

  18. Gopakumar GP, Swetha M, Sai Siva G, Sai Subrahmanyam GRK (2018) Convolutional neural network-based malaria diagnosis from focus stack of blood smear images acquired using custom-built slide scanner. J Biophotonics 11(3):e201700003

    Article  Google Scholar 

  19. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316(22):2402–2410

    Article  Google Scholar 

  20. Hathiwala R, Mehta PR, Nataraj G, Hathiwala S (2017) Led fluorescence microscopy: Novel method for malaria diagnosis compared with routine methods. J Infect Public Health 10(6):824–828

    Article  Google Scholar 

  21. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. pp 770–778

  22. Jan Z, Khan A, Sajjad M, Muhammad K, Rho S, Mehmood I (2018) A review on automated diagnosis of malaria parasite in microscopic blood smears images. Multimedia Tools Appl 77(8):9801–9826

    Article  Google Scholar 

  23. Lalremruata A, Jeyaraj S, Engleitner T, Joanny F, Lang A, Bélard S, Mombo-Ngoma G, Ramharter M, Kremsner PG, Mordmüller B et al (2017) Species and genotype diversity of plasmodium in malaria patients from gabon analysed by next generation sequencing. Malar J 16(1):398

    Article  Google Scholar 

  24. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    Article  Google Scholar 

  25. Ljosa V, Sokolnicki KL, Carpenter AE (2012) Annotated high-throughput microscopy image sets for validation. Nat Methods 9(7):637–637

    Article  Google Scholar 

  26. Loddo A, Di Ruberto C, Kocher M (2018) Recent advances of malaria parasites detection systems based on mathematical morphology. Sensors 18(2):513

    Article  Google Scholar 

  27. Loddo A, Di Ruberto C, Kocher M, Prod’Hom G (2018) Mp-idb: the malaria parasite image database for image processing and analysis. In: Sipaim–Miccai Biomedical Workshop, pp 57–65. Springer

  28. Lover AA, Baird JK, Gosling R, Price RN (2018) Malaria elimination: time to target all species. Am J Trop Med Hyg 99(1):17–23

    Article  Google Scholar 

  29. van der Maaten L, Hinton G (2008) Visualizing data using t-sne. Journal of Machine Learning Research 9(86):2579–2605

  30. Maity M, Jaiswal A, Gantait K, Chatterjee J, Mukherjee A (2020) Quantification of malaria parasitaemia using trainable semantic segmentation and capsnet. Pattern Recogn Lett 138:88–94

    Article  Google Scholar 

  31. Makhija KS, Maloney S, Norton R (2015) The utility of serial blood film testing for the diagnosis of malaria. Pathology 47(1):68–70

    Article  Google Scholar 

  32. Mbanefo A, Kumar N (2020) Evaluation of malaria diagnostic methods as a key for successful control and elimination programs. Tropical Medicine and Infectious Disease 5(2):102

    Article  Google Scholar 

  33. Mehanian C, Jaiswal M, Delahunt C, Thompson C, Horning M, Hu L, Ostbye T, McGuire S, Mehanian M, Champlin C, et al (2017) Computer-automated malaria diagnosis and quantitation using convolutional neural networks. In: IEEE International Conf. on Computer Vision Workshops, pp 116–125

  34. Mehta H, Nagtilak S, Rai S, Joglekar Y, Thombre H, Mirani H (2020) Detection of malaria parasite using deep learning. Tech. rep, EasyChair

  35. Molina A, Alférez S, Boldú L, Acevedo A, Rodellar J, Merino A (2020) Sequential classification system for recognition of malaria infection using peripheral blood cell images. Journal of Clinical Pathology

  36. Nanoti A, Jain S, Gupta C, Vyas G (2016) Detection of malaria parasite species and life cycle stages using microscopic images of thin blood smear. In: International Conf. on Inventive Computation Technologies, vol. 1, pp 1–6. IEEE

  37. Organization WH (2015) Global technical strategy for malaria 2016–2030. World Health Organization, Geneva

    Google Scholar 

  38. Pattanaik PA, Swarnkar T (2019) Vision-based malaria parasite image analysis: a systematic review. Int J Bioinform Res Appl 15(1):1–32

    Article  Google Scholar 

  39. Peñas KED, Rivera PT, Naval PC (2017). Malaria parasite detection and species identification on thin blood smears using a convolutional neural network. IEEE, pp 1–6

  40. Piaton E, Fabre M, Goubin-Versini I, Bretz-Grenier MF, Courtade-Saidi M, Vincent S, Belleannee G, Thivolet F, Boutonnat J, Debaque H et al (2015) Technical recommendations and best practice guidelines for may-grünwald-giemsa staining: literature review and insights from the quality assurance. Ann Pathol 35:294–305

    Article  Google Scholar 

  41. Poostchi M, Silamut K, Maude RJ, Jaeger S, Thoma G (2018) Image analysis and machine learning for detecting malaria. Transl Res 194:36–55

    Article  Google Scholar 

  42. Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain MA, Maude RJ, Jaeger S, Thoma GR (2018) Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 6:e4568

    Article  Google Scholar 

  43. Razzak MI (2015) Automatic detection and classification of malarial parasite. Int J Biometrics Bioinformatics (IJBB) 9(1):1–12

    Google Scholar 

  44. Ronneberger O, Fischer P, Brox, T (2015) U-net, Convolutional networks for biomedical image segmentation. pp 234–241 Springer

  45. Schmidt U, Weigert M, Broaddus C, Myers G (2018) Cell detection with star-convex polygons. pp 265–273 Springer

  46. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition

  47. Singh B, Daneshvar C (2013) Human infections and detection of plasmodium knowlesi. Clin Microbiol Rev 26(2):165–184

    Article  Google Scholar 

  48. Sriporn K, Tsai CF, Tsai CE, Wang P (2020) Analyzing malaria disease using effective deep learning approach. Diagnostics 10(10):744

    Article  Google Scholar 

  49. Stringer C, Wang T, Michaelos M, Pachitariu M (2020) Cellpose: a generalist algorithm for cellular segmentation. Nature Methods 1–7

  50. Tangpukdee N, Duangdee C, Wilairatana P, Krudsood S (2009) Malaria diagnosis: a brief review. Korean J Parasitol 47(2):93

    Article  Google Scholar 

  51. Tek FB, Dempster AG, Kale I (2010) Parasite detection and identification for automated thin blood film malaria diagnosis. Comput Vis Image Underst 114(1):21–32

    Article  Google Scholar 

  52. Tuteja R (2007) Malaria- an overview. FEBS J 274(18):4670–4679

    Article  Google Scholar 

  53. WHO: World malaria report. Tech. rep., WHO TEAM : Global Malaria Programme (2019). URL

  54. Urbanowicz RJ, Moore JH (2015) Exstracs 2.0: description and evaluation of a scalable learning classifier system. Evol Intel 8(2):89–116

    Article  Google Scholar 

  55. Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, Casey DC, Charlson FJ, Chen AZ, Coates MM et al (2016) Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388(10053):1459–1544

    Article  Google Scholar 

  56. WHO: World malaria report. Tech. rep., WHO TEAM : Global Malaria Programme (2019)

  57. WHO: World malaria report. Tech. rep., WHO TEAM: Global Malaria Programme (2019)

  58. Yang D, Subramanian G, Duan J, Gao S, Bai L, Chandramohanadas R, Ai Y (2017) A portable image-based cytometer for rapid malaria detection and quantification. PLoS One 12(6):e0179161

    Article  Google Scholar 

  59. Yang F, Poostchi M, Yu H, Zhou Z, Silamut K, Yu J, Maude RJ, Jaeger S, Antani S (2019) Deep learning for smartphone-based malaria parasite detection in thick blood smears. IEEE J Biomed Health Inform 24(5):1427–1438

    Article  Google Scholar 

Download references


This project has received funding from the Interreg 2 Seas programme 2014-2020 co-funded by the European Regional Development Fund under subsidy contract No. 2S05–043 H4DC.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ziheng Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 926 KB)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Benhabiles, H., Hammoudi, K. et al. A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic images. Neural Comput & Applic 34, 14223–14238 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: