Skip to main content

Advertisement

Log in

Solution of novel multi-fractional multi-singular Lane–Emden model using the designed FMNEICS

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The present study is related to design a novel multi-fractional multi-singular Lane–Emden model (MFMS-LEM) by keeping the ideas of the literature LEM and by extension of the work of doubly singular multi-fractional LEM. This mathematical novel MFMS-LEM is numerically treated by applying the fractional Meyer neuro-evolution intelligent solver (FMNEICS). The optimization is performed using the mutual heuristics of fractional Mayer wavelet neural networks (FMW-NN), the global search aptitude of genetic algorithms (GAs) and interior-point algorithm (IPA), i.e., FMW-NN-GAIPA. The derivation steps, details of the singular points, fractional terms, shape factors and singular points are also provided. The modeling strength of MW-NN is implemented to characterize the novel model in the sagacity of mean squared error of objective function and network optimization is performed with the integrated capability of GAIPA. The authentication, perfection and verification of FMNEICS is checked for three diverse cases of the novel model which are conventional via relative studies through the reference solutions based on accuracy, stability, robustness and convergence procedures. Furthermore, the explanations via the statistical measures validate the value of the designed stochastic solver FMW-NN-GAIPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Momani S, Ibrahim RW (2008) On a fractional integral equation of periodic functions involving Weyl-Riesz operator in Banach algebras. J Math Anal Appl 339(2):1210–1219

    MathSciNet  MATH  Google Scholar 

  2. Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J Math Anal Appl 265(2):229–248

    MathSciNet  MATH  Google Scholar 

  3. Ibrahim RW, Momani S (2007) On the existence and uniqueness of solutions of a class of fractional differential equations. J Math Anal Appl 334(1):1–10

    MathSciNet  MATH  Google Scholar 

  4. Yu F (2009) Integrable coupling system of fractional soliton equation hierarchy. Phys Lett A 373(41):3730–3733

    MathSciNet  MATH  Google Scholar 

  5. Bonilla B, Rivero M, Trujillo JJ (2007) On systems of linear fractional differential equations with constant coefficients. Appl Math Comput 187(1):68–78

    MathSciNet  MATH  Google Scholar 

  6. Sumelka W (2014) Fractional viscoplasticity. Mech Res Commun 56:31–36

    Google Scholar 

  7. Szymczyk M, Nowak M, Sumelka W (2020) Plastic strain localization in an extreme dynamic tension test of steel sheet in the framework of fractional viscoplasticity. Thin-Walled Struct 149:106522

    Google Scholar 

  8. Diethelm K, Freed AD (1999) On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In: Scientific computing in chemical engineering II. Springer, Berlin, pp 217–224

  9. Chaudhary NI et al (2021) Design of multi innovation fractional LMS algorithm for parameter estimation of input nonlinear control autoregressive systems. Appl Math Model 93:412–425

    MathSciNet  MATH  Google Scholar 

  10. Zhang Y, Sun H, Stowell HH, Zayernouri M, Hansen SE (2017) A review of applications of fractional calculus in Earth system dynamics. Chaos Solitons Fractals 102:29–46

    MathSciNet  MATH  Google Scholar 

  11. Muhammad Y et al (2021) Design of fractional evolutionary processing for reactive power planning with FACTS devices. Sci Rep 11(1):1–29

    Google Scholar 

  12. Daou RAZ, El Samarani F, Yaacoub C, Moreau X (2020) Fractional derivatives for edge detection: application to road obstacles. In: Smart cities performability, cognition, & security. Springer, Cham, pp 115–137

  13. Khan MW et al (2020) A New Fractional Particle Swarm Optimization with Entropy Diversity Based Velocity for Reactive Power Planning. Entropy 22(10):1112

    Google Scholar 

  14. Evans RM, Katugampola UN, Edwards DA (2017) Applications of fractional calculus in solving Abel-type integral equations: Surface–volume reaction problem. Comput Math Appl 73(6):1346–1362

    MathSciNet  MATH  Google Scholar 

  15. Khan NH et al (2020) Design of fractional particle swarm optimization gravitational search algorithm for optimal reactive power dispatch problems. IEEE Access 8:146785–146806

    Google Scholar 

  16. Torvik PJ, Bagley RL (1984) On the appearance of the fractional derivative in the behavior of real materials. J Appl Mech 51(2):294–298

    MATH  Google Scholar 

  17. Chaudhary NI et al (2020) An innovative fractional order LMS algorithm for power signal parameter estimation. Appl Math Model 83:703–718

    MathSciNet  MATH  Google Scholar 

  18. Matlob MA, Jamali Y (2019) The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer. Crit Rev™ Biomed Eng 47(4)

  19. Muhammad Y et al (2020) Design of fractional swarm intelligent computing with entropy evolution for optimal power flow problems. IEEE Access 8:111401–111419

    Google Scholar 

  20. Engheia N (1997) On the role of fractional calculus in electromagnetic theory. IEEE Antennas Propag Mag 39(4):35–46

    Google Scholar 

  21. Sabir Z et al (2021) Design of Morlet wavelet neural network for solving the higher order singular nonlinear differential equations. Alex Eng J 60(6):5935–5947

    Google Scholar 

  22. Aman S, Khan I, Ismail Z, Salleh MZ (2018) Applications of fractional derivatives to nanofluids: exact and numerical solutions. Math Model Nat Phenomena 13(1):2

    MathSciNet  MATH  Google Scholar 

  23. Masood Z et al (2020) Design of fractional order epidemic model for future generation tiny hardware implants. Futur Gener Comput Syst 106:43–54

    Google Scholar 

  24. Yang XJ, Machado JT, Cattani C, Gao F (2017) On a fractal LC-electric circuit modeled by local fractional calculus. Commun Nonlinear Sci Numer Simul 47:200–206

    MATH  Google Scholar 

  25. Bukhari AH et al (2020) Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 8:71326–71338

    Google Scholar 

  26. Dabiri A, Butcher EA, Nazari M (2017) Coefficient of restitution in fractional viscoelastic compliant impacts using fractional Chebyshev collocation. J Sound Vib 388:230–244

    Google Scholar 

  27. Zameer A et al (2020) Fractional-order particle swarm based multi-objective PWR core loading pattern optimization. Ann Nucl Energy 135:106982

    Google Scholar 

  28. Onal M, Esen A (2020) A Crank-Nicolson approximation for the time fractional Burgers equation. Appl Math Nonlinear Sci 5(2):177–184

    MathSciNet  Google Scholar 

  29. Khan ZA, Zubair S, Chaudhary NI et al (2020) Design of normalized fractional SGD computing paradigm for recommender systems. Neural Comput Appl 32:10245–10262. https://doi.org/10.1007/s00521-019-04562-6

    Article  Google Scholar 

  30. Bǎleanu D, Lopes AM (eds) (2019) Applications in Engineering, Life and Social Sciences. Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110571905.

  31. Kabra S et al (2020) The Marichev-Saigo-Maeda fractional calculus operators pertaining to the generalized k-struve function. Appl Math Nonlinear Sci 2:593–602

    MathSciNet  Google Scholar 

  32. Sun H, Zhang Y, Baleanu D, Chen W, Chen Y (2018) A new collection of real world applications of fractional calculus in science and engineering. Commun Nonlinear Sci Numer Simul 64:213–231

    MATH  Google Scholar 

  33. Muhammad Y, Khan R, Ullah F et al (2020) Design of fractional swarming strategy for solution of optimal reactive power dispatch. Neural Comput & Applic 32:10501–10518. https://doi.org/10.1007/s00521-019-04589-9

    Article  Google Scholar 

  34. Umar M et al (2021) Neuro-swarm intelligent computing paradigm for nonlinear HIV infection model with CD4+ T-cells. Math Comput Simul 188:241–253

    MathSciNet  Google Scholar 

  35. Guerrero-Sánchez Y (2020) Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discret Contin Dyn Syst S. https://doi.org/10.3934/dcdss.2020431

    Article  MATH  Google Scholar 

  36. Sabir Z et al (2020) Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear Emden-Fowler equation. Comput Appl Math 39(4):1–18

    MathSciNet  MATH  Google Scholar 

  37. He JH, Ji FY (2019) Taylor series solution for Lane-Emden equation. J Math Chem 57(8):1932–1934

    MathSciNet  MATH  Google Scholar 

  38. Sabir Z et al (2020) Heuristic computing technique for numerical solutions of nonlinear fourth order Emden-Fowler equation. Math Comput Simul 178:534–548

    MathSciNet  MATH  Google Scholar 

  39. Sabir Z et al (2021) A novel design of fractional Meyer wavelet neural networks with application to the nonlinear singular fractional Lane-Emden systems. Alex Eng J 60(2):2641–2659

    Google Scholar 

  40. Abdelkawy MA et al (2020) Numerical investigations of a new singular second-order nonlinear coupled functional Lane-Emden model. Open Physics 18(1):770–778

    Google Scholar 

  41. Sabir Z et al (2021) Fractional Mayer Neuro-swarm heuristic solver for multi-fractional Order doubly singular model based on Lane-Emden equation. Fractals. https://doi.org/10.1142/S0218348X2140017X

    Article  Google Scholar 

  42. Sabir Z et al (2021) Neuro-swarms intelligent computing using Gudermannian kernel for solving a class of second order Lane-Emden singular nonlinear model [J]. AIMS Math 6(3):2468–2485

    MathSciNet  Google Scholar 

  43. Farooq MU (2019) Noether-Like operators and first integrals for generalized systems of Lane-Emden equations. Symmetry 11(2):162

    MathSciNet  MATH  Google Scholar 

  44. Sabir Z et al (2020) Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation. Math Comput Simul 172:1–14

    MathSciNet  MATH  Google Scholar 

  45. Hadian-Rasanan AH, Rahmati D, Gorgin S, Parand K (2020) A single layer fractional orthogonal neural network for solving various types of Lane–Emden equation. New Astronomy 75:101307

    Google Scholar 

  46. Sabir Z et al (2020) FMNEICS: fractional Meyer neuro-evolution-based intelligent computing solver for doubly singular multi-fractional order Lane-Emden system. Comput Appl Math 39(4):1–18

    MathSciNet  MATH  Google Scholar 

  47. Touchent KA, Hammouch Z, Mekkaoui T (2020) A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl Math Nonlinear Sci 5(2):35–48

    MathSciNet  Google Scholar 

  48. Umar M et al (2020) A stochastic numerical computing heuristic of SIR nonlinear model based on dengue fever. Results Phys 103585

  49. Sabir Z et al (2020) A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems. Front Phys 8:224

    Google Scholar 

  50. Umar M et al (2020) A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics. Symmetry 12(10):1628

    Google Scholar 

  51. Raja MAZ et al (2018) A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur Phys J Plus 133(9):1–21

    Google Scholar 

  52. Umar M et al (2019) Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl Soft Comput 80:506–524

    Google Scholar 

  53. Sabir, Z.et al, (2018) Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl Soft Comput 65:152–169

    Google Scholar 

  54. Umar M et al (2020) A stochastic computational intelligent solver for numerical treatment of mosquito dispersal model in a heterogeneous environment. Eur Phys J Plus 135(7):1–23

    Google Scholar 

  55. Umar M et al (2020) Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur Phys J Plus 135(6):403

    Google Scholar 

  56. Pandey K et al (2020) Artificial Neural Network Optimized with a Genetic Algorithm for Seasonal Groundwater Table Depth Prediction in Uttar Pradesh, India . Sustainability 12(21):8932

    Google Scholar 

  57. Mouassa S, Jurado F, Bouktir T et al (2020) Novel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity grid. Neural Comput Appl. https://doi.org/10.1007/s00521-020-05496-0

    Article  Google Scholar 

  58. Ghalandari M et al (2019) Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm, artificial neural networks and design of experiments. Eng Appl Comput Fluid Mech 13(1):892–904

    Google Scholar 

  59. Ahmad I et al (2020) Integrated neuro-evolution-based computing solver for dynamics of nonlinear corneal shape model numerically. Neural Comput Applic. https://doi.org/10.1007/s00521-020-05355-y

    Article  Google Scholar 

  60. Najafi B, Faizollahzadeh Ardabili S, Shamshirband S, Chau KW, Rabczuk T (2018) Application of ANNs, ANFIS and RSM to estimating and optimizing the parameters that affect the yield and cost of biodiesel production. Eng Appl Comput Fluid Mech 12(1):611–624

    Google Scholar 

  61. Mehmood A et al (2020) Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. Neural Comput Appl 32(11):7121–7137

    Google Scholar 

  62. Taormina R, Chau KW (2015) ANN-based interval forecasting of streamflow discharges using the LUBE method and MOFIPS. Eng Appl Artif Intell 45:429–440

    Google Scholar 

  63. Mehmood A, Shi P et al (2021) Design of backtracking search heuristics for parameter estimation of power signals. Neural Comput Appl 33:1479–1496. https://doi.org/10.1007/s00521-020-05029-9

    Article  Google Scholar 

  64. Kazemi SMR, Minaei Bidgoli B, Shamshirband S, Karimi SM, Ghorbani MA, Chau KW, Kazem Pour R (2018) Novel genetic-based negative correlation learning for estimating soil temperature. Eng Appl Comput Fluid Mech 12(1):506–516

    Google Scholar 

  65. Mehmood A, Zameer A, Chaudhary NI et al (2020) Design of meta-heuristic computing paradigms for Hammerstein identification systems in electrically stimulated muscle models. Neural Comput Applic 32:12469–12497. https://doi.org/10.1007/s00521-020-04701-4

    Article  Google Scholar 

  66. Wu CL, Chau KW (2013) Prediction of rainfall time series using modular soft computing methods. Eng Appl Artif Intell 26(3):997–1007

    Google Scholar 

  67. Raja MAZ, Chaudhary NI, Ahmed Z, Rehman AU, Aslam MS (2019) A novel application of kernel adaptive filtering algorithms for attenuation of noise interferences. Neural Comput Appl 31(12):9221–9240

    Google Scholar 

  68. Raja MAZ, Manzar MA, Samar R (2015) An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl Math Model 39(10–11):3075–3093

    MathSciNet  MATH  Google Scholar 

  69. Zúñiga-Aguilar CJ, Romero-Ugalde HM, Gómez-Aguilar JF, Escobar-Jiménez RF, Valtierra-Rodríguez M (2017) Solving fractional differential equations of variable-order involving operators with Mittag-Leffler kernel using artificial neural networks. Chaos Solitons Fract 103:382–403

    MathSciNet  MATH  Google Scholar 

  70. Ahmad I et al (2019) Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput Appl 31(12):9041–9059

    Google Scholar 

  71. Artar M, Daloğlu AT (2018) Optimum weight design of steel space frames with semi-rigid connections using harmony search and genetic algorithms. Neural Comput Appl 29(11):1089–1100

    Google Scholar 

  72. Adánez JM, Al-Hadithi BM, Jiménez A (2019) Multidimensional membership functions in T-S fuzzy models for modelling and identification of nonlinear multivariable systems using genetic algorithms. Appl Soft Comput 75:607–615

    Google Scholar 

  73. Hassan A, Kamran M, Illahi A, Zahoor RMA (2019) Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system. Eur Phys J Plus 134(3):122

    Google Scholar 

  74. Flórez CAC, Rosário JM, Amaya D (2018) Control structure for a car-like robot using artificial neural networks and genetic algorithms. Neural Comput Appl 20(2020):1–14

    Google Scholar 

  75. Zameer A et al (2019) Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures. Soft Comput 23(10):3449–3463

    Google Scholar 

  76. Raja MAZ et al (2019) Design of hybrid nature-inspired heuristics with application to active noise control systems. Neural Comput Appl 31(7):2563–2591

    Google Scholar 

  77. Akbar S et al (2017) Design of bio-inspired heuristic techniques hybridized with sequential quadratic programming for joint parameters estimation of electromagnetic plane waves. Wireless Pers Commun 96(1):1475–1494

    Google Scholar 

  78. Raja MAZ, Khan JA, Zameer A, Khan NA, Manzar MA (2019) Numerical treatment of nonlinear singular Flierl-Petviashivili systems using neural networks models. Neural Comput Appl 31(7):2371–2394

    Google Scholar 

  79. Jamal R et al (2019) Hybrid Bio-Inspired Computational Heuristic Paradigm for Integrated Load Dispatch Problems Involving Stochastic Wind. Energies 12(13):2568

    MathSciNet  Google Scholar 

  80. Raja MAZ et al (2017) Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl Soft Comput 52:605–629

    Google Scholar 

  81. Bertocchi C, Chouzenoux E, Corbineau MC, Pesquet JC, Prato M (2020) Deep unfolding of a proximal interior point method for image restoration. Inverse Probl 36(3):034005

    MathSciNet  MATH  Google Scholar 

  82. Raja MAZ et al (2019) Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem. Neural Comput Appl 31(1):447–475

    MathSciNet  Google Scholar 

  83. Jiang H, Kathuria T, Lee YT, Padmanabhan S, Song Z (2020) A faster interior point method for semidefinite programming. In: 2020 IEEE 61st annual symposium on foundations of computer science (FOCS), 2020, pp 910–918. https://doi.org/10.1109/FOCS46700.2020.00089

  84. Raja MAZ, Aslam MS, Chaudhary NI, Khan WU (2018) Bio-inspired heuristics hybrid with interior-point method for active noise control systems without identification of secondary path. Front Inf Technol Electron Eng 19(2):246–259

    Google Scholar 

  85. Dueri D, Açıkmeşe B, Scharf DP, Harris MW (2017) Customized real-time interior-point methods for onboard powered-descent guidance. J Guid Control Dyn 40(2):197–212

    Google Scholar 

  86. Mangoni D, Tasora A, Garziera R (2018) A primal–dual predictor–corrector interior point method for non-smooth contact dynamics. Comput Methods Appl Mech Eng 330:351–367

    MathSciNet  MATH  Google Scholar 

  87. Wambacq J, Maes K, Rezayat A, Guillaume P, Lombaert G (2019) Localization of dynamic forces on structures with an interior point method using group sparsity. Mech Syst Signal Process 115:593–606

    Google Scholar 

  88. Raja MAZ, Shah FH, Tariq M, Ahmad I (2018) Design of artificial neural network models optimized with sequential quadratic programming to study the dynamics of nonlinear Troesch’s problem arising in plasma physics. Neural Comput Appl 29(6):83–109

    Google Scholar 

  89. Ahmed SI et al (2020) A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines. Eur Phys J Plus 135(1):1–29

    Google Scholar 

  90. Bukhari AH et al (2020) Design of a hybrid NAR-RBFs neural network for nonlinear dusty plasma system. Alex Eng J 59(5):3325–3345

    Google Scholar 

  91. Umar M et al (2021) Integrated neuro-swarm heuristic with interior-point for nonlinear SITR model for dynamics of novel COVID-19. Alex Eng J 60(3):2811–2824

    Google Scholar 

  92. Assad A et al (2021) Nanoscale heat and mass transport of magnetized 3-D chemically radiative hybrid nanofluid with orthogonal/inclined magnetic field along rotating sheet, Case Studies in Thermal Engineering, Volume 26. ISSN 101193:2214–3157. https://doi.org/10.1016/j.csite.2021.101193

    Article  Google Scholar 

  93. Ayub A et al (2021) Interpretation of infinite shear rate viscosity and a nonuniform heat sink/source on a 3D radiative cross nanofluid with buoyancy assisting/opposing flow. Heat Transfer 50(5):4192–4232

    Google Scholar 

  94. Sabir Z, Ali MR, Raja MAZ et al (2021) Computational intelligence approach using Levenberg–Marquardt backpropagation neural networks to solve the fourth-order nonlinear system of Emden–Fowler model. Eng Comput. https://doi.org/10.1007/s00366-021-01427-2

    Article  Google Scholar 

  95. Masood Z et al (2019) Design of a mathematical model for the Stuxnet virus in a network of critical control infrastructure. Comput Secur 87:101565

    Google Scholar 

  96. Masood Z et al (2018) Design of epidemic computer virus model with effect of quarantine in the presence of immunity. Fund Inform 161(3):249–273

    MathSciNet  MATH  Google Scholar 

  97. Elsonbaty A, et al (2021) Dynamical analysis of a novel discrete fractional sitrs model for COVID-19. Fractals Article ID:2140035

  98. Cheema TN et al (2020) Intelligent computing with Levenberg–Marquardt artificial neural networks for nonlinear system of COVID-19 epidemic model for future generation disease control. Eur Phys J Plus 135(11):1–35

    Google Scholar 

  99. Guerrero Sánchez Y et al (2020) Analytical and approximate solutions of a novel nervous stomach mathematical model. Discrete Dyn Nat Soc 2020:1–9

    MathSciNet  MATH  Google Scholar 

  100. Sabir Z et al (2020) Numerical investigations to design a novel model based on the fifth order system of Emden-Fowler equations. Theor Appl Mech Lett 10(5):333–342

    Google Scholar 

  101. Guerrero Sánchez Y et al (2020) Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus (COVID). Fractals 28(8):1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan L. G. Guirao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabir, Z., Raja, M.A.Z., Guirao, J.L.G. et al. Solution of novel multi-fractional multi-singular Lane–Emden model using the designed FMNEICS. Neural Comput & Applic 33, 17287–17302 (2021). https://doi.org/10.1007/s00521-021-06318-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06318-7

Keywords

Navigation