Skip to main content
Log in

A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Spike trains (STs) induced by external stimuli are complex and challenging to decode the embedded spatiotemporal information. Although various methods have been developed to characterize STs, few applications have been reported in tactile discrimination applications. In this paper, a neurocomputing method based on reference spike train (RST) is proposed to establish a neural computation scheme, on which existing ST metrics could be fed into various traditional models directly. Moreover, existing metrics in the field of statistics and vector measurement are introduced together to extract more discriminative features. With the binning technique and feature selection algorithm applied, the neural computation scheme is aimed at taking advantage of as maximal as possible information contained in tactile signals. Based on our designed artificial fingertip, the effect is validated by improving the recognition accuracy from 77.6% to 83.4% when it is applied to the discrimination of eight roughness surfaces. Furthermore, properties of RST, such as spike intervals and distributions, are evaluated and it is found that RSTs with uniform distribution perform the best for tactile discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Johansson RS, Flanagan JR (2009) Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5):345

    Article  Google Scholar 

  2. Libouton X, Barbier O, Berger Y, Plaghki L, Thonnard JL (2012) Tactile roughness discrimination of the finger pad relies primarily on vibration sensitive afferents not necessarily located in the hand. Behav Brain Res 229(1):273–279

    Article  Google Scholar 

  3. Vallbo A, Johansson RS et al (1984) Properties of cutaneous mechanoreceptors in the human hand related to touch sensation. Hum Neurobiol 3(1):3–14

    Google Scholar 

  4. Lesniak DR, Wellnitz SA, Gerling GJ, Lumpkin EA (2009) Statistical analysis and modeling of variance in the sa-i mechanoreceptor response to sustained indentation. In: Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE. IEEE, pp 6814–6817

  5. Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H et al (2015) A skin-inspired organic digital mechanoreceptor. Science 350(6258):313–316

    Article  Google Scholar 

  6. Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: Gifu hand II. IEEE/ASME Trans Mechatron 7(3):296–303

    Article  Google Scholar 

  7. Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H (2017) Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy 40:65–72

    Article  Google Scholar 

  8. Hughes D, Correll N (2015) Texture recognition and localization in amorphous robotic skin. Bioinspiration Biomimetics 10(5):055002

    Article  Google Scholar 

  9. Wandersman E, Candelier R, Debrégeas G, Prevost A (2011) Texture-induced modulations of friction force: the fingerprint effect. Phys Rev Lett 107(6):164301

    Article  Google Scholar 

  10. Scheibert J, Leurent S, Prevost A, Debrégeas G (2009) The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323(5920):1503–1506

    Article  Google Scholar 

  11. Liu Y, Bao R, Tao J, Li J, Dong M, Pan C (2020) Recent progress in tactile sensors and their applications in intelligent systems. Sci Bull 65(1):70–88

    Article  Google Scholar 

  12. Chathuranga DS, Hirai S, et al. (2013) Investigation of a biomimetic fingertip’s ability to discriminate fabrics based on surface textures. In: 2013 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 1667–1674

  13. Feng J, Jiang Q (2019) Slip and roughness detection of robotic fingertip based on FBG. Sens Actuat A 287:143–149

    Article  Google Scholar 

  14. Salehi S, Cabibihan JJ, Ge SS (2011) Artificial skin ridges enhance local tactile shape discrimination. Sensors 11(9):8626–8642

    Article  Google Scholar 

  15. Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. Computational neuroscience series. Massachusetts Institute of Technology Press

  16. Bassett DS, Khambhati AN, Grafton ST (2017) Emerging frontiers of neuroengineering: a network science of brain connectivity. Annu Rev Biomed Eng 19:327–352

    Article  Google Scholar 

  17. Ghosh-Dastidar S, Adeli H (2009) Spiking neural networks. Int J Neural Syst 19(04):295–308

    Article  Google Scholar 

  18. Lin P, Chang S, Wang H, Huang Q, He J (2019) Spikecd: a parameter-insensitive spiking neural network with clustering degeneracy strategy. Neural Comput Appl 31(8):3933–3945

    Article  Google Scholar 

  19. Xie X, Wen S, Yan Z, Huang T, Chen Y (2020) Designing pulse-coupled neural networks with spike-synchronization-dependent plasticity rule: image segmentation and memristor circuit application. Neural Comput Appl 32(17):13441–13452

    Article  Google Scholar 

  20. Chen J, Li K, Rong H, Bilal K, Li K, Yu PS (2019) A periodicity-based parallel time series prediction algorithm in cloud computing environments. Inf Sci 496:506–537

    Article  Google Scholar 

  21. Zhang L, Li K, Li C, Li K (2017) Bi-objective workflow scheduling of the energy consumption and reliability in heterogeneous computing systems. Inf Sci 379:241–256

    Article  Google Scholar 

  22. Chicharro D, Kreuz T, Andrzejak RG (2011) What can spike train distances tell us about the neural code? J Neurosci Methods 199(1):146–165

    Article  Google Scholar 

  23. Kreuz T, Chicharro D, Houghton C, Andrzejak RG, Mormann F (2012) Monitoring spike train synchrony. J Neurophysiol 109(5):1457–1472

    Article  Google Scholar 

  24. Chen J, Yu P (2019) A domain adaptive density clustering algorithm for data with varying density distribution. IEEE Trans Knowl Data Eng 1–1

  25. Kreuz T, Mulansky M, Bozanic N (2015) Spiky: a graphical user interface for monitoring spike train synchrony. J Neurophysiol 113(9):3432–3445

    Article  Google Scholar 

  26. Rongala UB, Mazzoni A, Oddo CM (2017) Neuromorphic artificial touch for categorization of naturalistic textures. IEEE Trans Neural Network Learn Syst 28(4):819–829

    Article  Google Scholar 

  27. Zhengkun Y, Yilei Z (2017) Recognizing tactile surface roughness with a biomimetic fingertip: a soft neuromorphic approach. Neurocomputing 244:102–111

    Article  Google Scholar 

  28. Bologna L, Pinoteau J, Passot J, Garrido J, Vogel J, Vidal ER, Arleo A (2013) A closed-loop neurobotic system for fine touch sensing. J Neural Eng 10(4):046019

    Article  Google Scholar 

  29. Oddo CM, Controzzi M, Beccai L, Cipriani C, Carrozza MC (2011) Roughness encoding for discrimination of surfaces in artificial active-touch. IEEE Trans Rob 27(3):522–533

    Article  Google Scholar 

  30. Song A, Han Y, Hu H, Li J (2014) A novel texture sensor for fabric texture measurement and classification. IEEE Trans Instrum Meas 63(7):1739–1747

    Article  Google Scholar 

  31. Nakamoto H, Matsumoto T (2016) Tactile texture classification using magnetic tactile sensor. Int J Appl Electromagnet Mech 52(3–4):1673–1679

    Article  Google Scholar 

  32. Jamali N, Sammut C (2011) Majority voting: material classification by tactile sensing using surface texture. IEEE Trans Rob 27(3):508–521

    Article  Google Scholar 

  33. Qin L, Yi Z, Zhang Y (2017) Enhanced surface roughness discrimination with optimized features from bio-inspired tactile sensor. Sens Actuat A 264:133–140

    Article  Google Scholar 

  34. Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron-astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90

    Article  Google Scholar 

  35. Walter F, Röhrbein F, Knoll A (2015) Neuromorphic implementations of neurobiological learning algorithms for spiking neural networks. Neural Netw 72:152–167

    Article  Google Scholar 

  36. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  Google Scholar 

  37. Stein RB (1967) Some models of neuronal variability. Biophys J 7(1):37–68

    Article  Google Scholar 

  38. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  39. Eliasmith C, Anderson CH (2004) Neural engineering: computation, representation, and dynamics in neurobiological systems. MIT Press, Cambridge

    Google Scholar 

  40. Lee WW, Yu H, Thakor NV (2014) Gait event detection through neuromorphic spike sequence learning. In: 2014 5th IEEE RAS & EMBS international conference on biomedical robotics and biomechatronics. IEEE, pp 899–904

  41. Friedl KE, Voelker AR, Peer A, Eliasmith C (2016) Human-inspired neurorobotic system for classifying surface textures by touch. IEEE Robot Autom Lett 1(1):516–523

    Article  Google Scholar 

  42. Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, Goodman PH, Harris FC et al (2007) Simulation of networks of spiking neurons: a review of tools and strategies. J Comput Neurosci 23(3):349–398

    Article  MathSciNet  Google Scholar 

  43. Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  Google Scholar 

  44. Misra J, Saha I (2010) Artificial neural networks in hardware: a survey of two decades of progress. Neurocomputing 74(1–3):239–255

    Article  Google Scholar 

  45. Barron-Zambrano JH, Torres-Huitzil C (2013) Fpga implementation of a configurable neuromorphic cpg-based locomotion controller. Neural Netw 45:50–61

    Article  Google Scholar 

  46. Cunningham JP, Gilja V, Ryu SI, Shenoy KV (2009) Methods for estimating neural firing rates, and their application to brain–machine interfaces. Neural Netw 22(9):1235–1246

    Article  Google Scholar 

  47. Ostojic S (2011) Interspike interval distributions of spiking neurons driven by fluctuating inputs. J Neurophysiol 106(1):361–373

    Article  MathSciNet  Google Scholar 

  48. Lestienne R (2001) Spike timing, synchronization and information processing on the sensory side of the central nervous system. Prog Neurobiol 65(6):545–591

    Article  Google Scholar 

  49. Johansson RS, Birznieks I (2004) First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat Neurosci 7(2):170

    Article  Google Scholar 

  50. Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97(1–2):273–324

    Article  MATH  Google Scholar 

  51. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303

    Article  Google Scholar 

  52. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4–5):411–430

    Article  Google Scholar 

  53. Deza MM, Deza E (2009) Encyclopedia of distances. In: Encyclopedia of distances. Springer

  54. Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165(1):151–161

    Article  Google Scholar 

  55. Kreuz T, Chicharro D, Greschner M, Andrzejak RG (2011) Time-resolved and time-scale adaptive measures of spike train synchrony. J Neurosci Methods 195(1):92–106

    Article  Google Scholar 

  56. Quiroga RQ, Kreuz T, Grassberger P (2002) Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys Rev E 66(4):041904

    Article  MathSciNet  Google Scholar 

  57. Rossum M (2001) A novel spike distance. Neural Comput 13(4):751–763

    Article  MATH  Google Scholar 

  58. Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326

    Article  Google Scholar 

  59. Yi Z, Zhang Y, Peters J (2017) Bioinspired tactile sensor for surface roughness discrimination. Sens Actuat A 255:46–53

    Article  Google Scholar 

  60. Qin L, Zhang Y (2018) Roughness discrimination with bio-inspired tactile sensor manually sliding on polished surfaces. Sens Actuat A 279:433–441

    Article  Google Scholar 

Download references

Acknowledgements

Longhui Qin would like to thank the support of the Fundamental Research Funds for the Central Universities (No. 2242021R10024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zhang, Y. A reference spike train-based neurocomputing method for enhanced tactile discrimination of surface roughness. Neural Comput & Applic 33, 14793–14807 (2021). https://doi.org/10.1007/s00521-021-06119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-06119-y

Keywords

Navigation