Skip to main content
Log in

Primate vision: a single layer perception

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Visual signals play a significant role in learning, as eyes are actively acquiring new data frames every second and extract relevant information for learning of the newly acquired data in terms of pattern recognition, object identification, and so on. An attempt has been made to link functionality to distinct morphologies of retinal ganglion cells (RGC). Each RGC’s are organized in specific modular connectivity patterns with the photoreceptor cells via bipolar cells. Two distinct morphologies, separately integrated to a single layer network of RGCs, suggest multi-scale feature extraction and identification as one of the functional aspects, depending on the spatial spread of the dendrites of an individual neuron. Apart from texture selectivity, the model also suggests image segmentation as the basic functionality of a single-layered network of RGCs, which might be further feed-forward to successive networks for clustering and classification of visual information. The model shows directional edge selectivity as connectivity specific computation whereas the sensitivity toward fine to coarse edges is specific to the dendritic spread of the connected RGC. Later, the proposed model is incorporated in the hmax model designed by Poggio inspired by Hubel and Wiesel’s functional architecture of the striate cortex that produces some significant results in terms of pattern learning and object recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ammermüller J, Kolb H (1995) The organization of the turtle inner retina. i. On-and off-center pathways. J Comp Neurol 358(1):1–34

    Article  Google Scholar 

  2. Baruah SMB, Gogoi P, Roy S (2019) From cable equation to active and passive nerve membrane model. In: 2nd International conference on advanced computational and communication paradigms (ICACCP). IEEE, pp 1–5

  3. Blasdel GG, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321(6070):579

    Article  Google Scholar 

  4. Blinder P, Cove J, Foox M, Baranes D (2008) Convergence among non-sister dendritic branches: an activity-controlled mean to strengthen network connectivity. PLoS ONE 3(11):e3782

    Article  Google Scholar 

  5. Caldwell JH, Schaller KL, Lasher RS, Peles E, Levinson SR (2000) Sodium channel nav1. 6 is localized at nodes of ranvier, dendrites, and synapses. Proc Nat Acad Sci 97(10):5616–5620

    Article  Google Scholar 

  6. Calkins DJ, Schein SJ, Tsukamoto Y, Sterling P (1994) M and l cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371(6492):70

    Article  Google Scholar 

  7. Dacey DM (2000) Parallel pathways for spectral coding in primate retina. Annu Rev Neurosci 23(1):743–775

    Article  Google Scholar 

  8. Dacey DM, Peterson BB, Robinson FR, Gamlin PD (2003) Fireworks in the primate retina: in vitro photodynamics reveals diverse lgn-projecting ganglion cell types. Neuron 37(1):15–27

    Article  Google Scholar 

  9. DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD (1999) Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J Neurosci 19(10):4046–4064

    Article  Google Scholar 

  10. van Elburg RA, van Ooyen A (2010) Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLoS Comput Biol 6(5):e1000781

    Article  MathSciNet  Google Scholar 

  11. Fohlmeister J, Miller R (1997) Impulse encoding mechanisms of ganglion cells in the tiger salamander retina. J Neurophysiol 78(4):1935–1947

    Article  Google Scholar 

  12. Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65(2):150–164

    Article  Google Scholar 

  13. Guo T, Tsai D, Morley JW, Suaning GJ, Kameneva T, Lovell NH, Dokos S (2016) Electrical activity of on and off retinal ganglion cells: a modelling study. J Neural Eng 13(2):025005

    Article  Google Scholar 

  14. Hansen T, Gegenfurtner KR (2007) Higher order color mechanisms for image segmentation. In: International symposium on brain, vision, and artificial intelligence. Springer, pp 72–83

  15. Holmes WR (2014) Equivalent cylinder model (rall)

  16. Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey striate cortex. J Physiol 195(1):215–243

    Article  Google Scholar 

  17. Hursh J (1939) Conduction velocity and diameter of nerve fibers. Am J Physiol-Legacy Content 127(1):131–139

    Article  Google Scholar 

  18. Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Networks 14(6):1569–1572

    Article  MathSciNet  Google Scholar 

  19. Izhikevich EM (2005) Dynamical systems in neuroscience: the geometry of excitability and bursting? Springer

  20. Izhikevich EM (2006) Bursting. Scholarpedia 1(3):1300

    Article  Google Scholar 

  21. Izhikevich EM (2007) Dynamical systems in neuroscience. MIT Press

  22. Johnson KP, Zhao L, Kerschensteiner D (2018) A pixel-encoder retinal ganglion cell with spatially offset excitatory and inhibitory receptive fields. Cell Rep 22(6):1462–1472

    Article  Google Scholar 

  23. Kameneva T, Meffin H, Burkitt AN (2011) Modelling intrinsic electrophysiological properties of on and off retinal ganglion cells. J Comput Neurosci 31(3):547–561

    Article  MATH  Google Scholar 

  24. Kara P, Boyd JD (2009) A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458(7238):627

    Article  Google Scholar 

  25. Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on ca3 pyramidal cell electrophysiology: a simulation study. Brain Res 941(1–2):11–28

    Article  Google Scholar 

  26. Margolis DJ, Detwiler PB (2007) Different mechanisms generate maintained activity in on and off retinal ganglion cells. J Neurosci 27(22):5994–6005

    Article  Google Scholar 

  27. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4(9):877

    Article  Google Scholar 

  28. MD Publications: Vision magazine online, Why Retinal Ganglion Cells Are Important in Glaucoma (2018). http://visionmagazineonline.co.za/2018/04/01/why-retinal-ganglion-cells-are-important-in-glaucoma/. Clinical Archive 04 Jan 2018

  29. Misonou H (2018) Precise localizations of voltage-gated sodium and potassium channels in neurons. Dev Neurobiol 78(3):271–282

    Article  Google Scholar 

  30. Nelson R, Kolb H (1983) Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res 23(10):1183–1195

    Article  Google Scholar 

  31. Neske G (2011) Solving the cable equation. http://demonstrations.wolfram.com/SolvingTheCableEquation/

  32. Nusser Z (2012) Differential subcellular distribution of ion channels and the diversity of neuronal function. Curr Opin Neurobiol 22(3):366–371

    Article  Google Scholar 

  33. O’Brien BJ, Isayama T, Richardson R, Berson DM (2002) Intrinsic physiological properties of cat retinal ganglion cells. J Physiol 538(3):787–802

    Article  Google Scholar 

  34. Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433(7026):597

    Article  Google Scholar 

  35. Ohki K, Reid RC (2007) Specificity and randomness in the visual cortex. Curr Opin Neurobiol 17(4):401–407

    Article  Google Scholar 

  36. Pang JJ, Gao F, Wu SM (2003) Light-evoked excitatory and inhibitory synaptic inputs to on and off \(\alpha \) ganglion cells in the mouse retina. J Neurosci 23(14):6063–6073

    Article  Google Scholar 

  37. Pasupathy A, El-Shamayleh Y, Popovkina DV (2018) Visual shape and object perception. In: Oxford research encyclopedia of neuroscience

  38. Patterson SS, Neitz M, Neitz J (2019) Reconciling color vision models with midget ganglion cell receptive fields. Front Neurosci 13:865

    Article  Google Scholar 

  39. Rall W (1962) Electrophysiology of a dendritic neuron model. Biophys J 2(2 Pt 2):145

    Article  Google Scholar 

  40. Rall W (1962) Theory of physiological properties of dendrites. Ann N Y Acad Sci 96(4):1071–1092

    Article  Google Scholar 

  41. Rasche C (2005) The making of a neuromorphic visual system. Springer

  42. Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition in cortex. Nat Neurosci 2(11):1019–1025

    Article  Google Scholar 

  43. Rodrigues J, du Buf H (2005) Multi-scale cortical keypoint representation for attention and object detection. In: Iberian conference on pattern recognition and image analysis. Springer, pp 255–262

  44. Rodrigues J, du Buf JH (2005) Multi-scale keypoints in v1 and face detection. In: International symposium on brain, vision, and artificial intelligence. Springer, pp 205–214

  45. Rodrigues J, du Buf JH (2006) Multi-scale keypoints in v1 and beyond: object segregation, scale selection, saliency maps and face detection. BioSystems 86(1–3):75–90

    Article  Google Scholar 

  46. Serre T, Oliva A, Poggio T (2007) A feedforward architecture accounts for rapid categorization. Proc Nat Acad Sci 104(15):6424–6429

    Article  Google Scholar 

  47. Serre T, Wolf L, Bileschi S, Riesenhuber M, Poggio T (2007) Robust object recognition with cortex-like mechanisms. IEEE Trans Pattern Anal Mach Intell 29(3):411–426

    Article  Google Scholar 

  48. Serre T, Wolf L, Poggio T (2005) Object recognition with features inspired by visual cortex. In: IEEE Computer society conference on computer vision and pattern recognition (CVPR’05), vol 2. IEEE, pp 994–1000

  49. Shah MM, Hammond RS, Hoffman DA (2010) Dendritic ion channel trafficking and plasticity. Trends Neurosci 33(7):307–316

    Article  Google Scholar 

  50. Sheasby BW, Fohlmeister JF (1999) Impulse encoding across the dendritic morphologies of retinal ganglion cells. J Neurophysiol 81(4):1685–1698

    Article  Google Scholar 

  51. Shi X, Barchini J, Ledesma HA, Koren D, Jin Y, Liu X, Wei W, Cang J (2017) Retinal origin of direction selectivity in the superior colliculus. Nat Neurosci 20(4):550–558

    Article  Google Scholar 

  52. Sin WC, Haas K, Ruthazer ES, Cline HT (2002) Dendrite growth increased by visual activity requires nmda receptor and rho gtpases. Nature 419(6906):475

    Article  Google Scholar 

  53. Tang S, Lee TS, Li M, Zhang Y, Xu Y, Liu F, Teo B, Jiang H (2018) Complex pattern selectivity in macaque primary visual cortex revealed by large-scale two-photon imaging. Curr Biol 28(1):38–48

    Article  Google Scholar 

  54. Ts’o DY, Frostig RD, Lieke EE, Grinvald A (1990) Functional organization of primate visual cortex revealed by high resolution optical imaging. Science 249(4967):417–420

    Article  Google Scholar 

  55. Van Hook MJ, Berson DM (2010) Hyperpolarization-activated current (i h) in ganglion-cell photoreceptors. PloS One 5(12):1

    Google Scholar 

  56. Van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network: Comput Neural Syst 13(3):311–325

    Article  Google Scholar 

  57. Weber AJ, Harman CD (2005) Structure-function relations of parasol cells in the normal and glaucomatous primate retina. Invest Ophthalmol Vis Sci 46(9):3197–3207

    Article  Google Scholar 

  58. Wong RC, Cloherty SL, Ibbotson MR, O’Brien BJ (2012) Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. J Neurophysiol 108(7):2008–2023

    Article  Google Scholar 

  59. Yuan Q, Xiang Y, Yan Z, Han C, Jan LY, Jan YN (2011) Light-induced structural and functional plasticity in drosophila larval visual system. Science 333(6048):1458–1462

    Article  Google Scholar 

Download references

Acknowledgements

This publication is an outcome of the R&D work undertaken project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrat Malla Bujar Baruah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruah, S.M.B., Nandi, D., Gogoi, P. et al. Primate vision: a single layer perception. Neural Comput & Applic 33, 11765–11775 (2021). https://doi.org/10.1007/s00521-021-05868-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-021-05868-0

Keywords

Navigation