Enhancing of dataset using DeepDream, fuzzy color image enhancement and hypercolumn techniques to detection of the Alzheimer's disease stages by deep learning model

Abstract

Alzheimer's disease (AD), which occurs as a result of the loss of cognitive functions in the brain, causes near-forgetfulness in the case and dementia in subsequent processes. Dataset consists of MR images containing four phases of AD. The dataset was re-enhanced separately with DeepDream, fuzzy color image enhancement, hypercolumn techniques. Visual Geometry Group-16 (VGG-16) deep learning model is used in the enhancing process and deep features are combined. Linear Regression is used for the selection of efficient features. The Support Vector Machine is preferred as a classifier. With the proposed approach, the classification achievement was obtained as 100% in Mild Dementia, 99.94% in Moderate Dementia, 100% in non-Dementia, 99.94% in Very Mild Dementia. The overall accuracy was 99.94%. The proposed approach increased the prediction success in detecting Alzheimer's stages by re-enhancing MR images. Thus, an efficient early diagnosis model was realized at an affordable cost for individuals likely to progress with dementia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Weller J, Budson A (2018) Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 7:F1000 Faculty Rev-1161. https://doi.org/https://doi.org/10.12688/f1000research.14506.1

  2. 2.

    Weller J, Budson A (2019) 2019 Alzheimer’s disease facts and figures. Alzheimer’s Dement 15:321–387. https://doi.org/10.1016/j.jalz.2019.01.010

    Article  Google Scholar 

  3. 3.

    Qiu S, Heydari MS, Miller MI et al (2019) P1–119: enhancing deep learning model performance for AD diagnosis using ROI-based selection. Alzheimer’s Dement 15:P280–P281. https://doi.org/10.1016/j.jalz.2019.06.674

    Article  Google Scholar 

  4. 4.

    Basaia S, Agosta F, Wagner L et al (2019) Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin 21:101645. https://doi.org/10.1016/j.nicl.2018.101645

    Article  Google Scholar 

  5. 5.

    Liu M, Li F, Yan H et al (2020) A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease. Neuroimage 208:116459. https://doi.org/10.1016/j.neuroimage.2019.116459

    Article  Google Scholar 

  6. 6.

    Lu X, Wu H, Zeng Y (2019) Classification of Alzheimer’s disease in MobileNet. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1345/4/042012

    Article  Google Scholar 

  7. 7.

    Shen T, Jiang J, Lu J et al (2019) Predicting alzheimer disease from mild cognitive impairment with a deep belief network based on 18F-FDG-PET images. Mol Imag 18:1–9. https://doi.org/10.1177/1536012119877285

    Article  Google Scholar 

  8. 8.

    Xiao Z, Ding Y, Lan T et al (2017) Brain MR image classification for alzheimer’s disease diagnosis based on multifeature fusion. Comput Math Methods Med 2017:1952373. https://doi.org/10.1155/2017/1952373

    Article  Google Scholar 

  9. 9.

    Jo T, Nho K, Saykin AJ (2019) Deep learning in alzheimer’s disease: diagnostic classification and prognostic prediction using neuroimaging data. Front Aging Neurosci 11:220. https://doi.org/10.3389/fnagi.2019.00220

    Article  Google Scholar 

  10. 10.

    Menger V, Scheepers F, Spruit M (2018) Comparing deep learning and classical machine learning approaches for predicting inpatient violence incidents from clinical text. Appl Sci 8:981. https://doi.org/10.3390/app8060981

    Article  Google Scholar 

  11. 11.

    Nguyen G, Dlugolinsky S, Bobák M et al (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52:77–124. https://doi.org/10.1007/s10462-018-09679-z

    Article  Google Scholar 

  12. 12.

    Sze V, Chen YH, Yang TJ, Emer JS (2017) Efficient processing of deep neural networks: a tutorial and survey. Proc IEEE 105:2295–2329. https://doi.org/10.1109/JPROC.2017.2761740

    Article  Google Scholar 

  13. 13.

    Dubey S (2020) Alzheimer’s Dataset four class of Images. In: Kaggle. https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images/data. Accessed 1 Mar 2020

  14. 14.

    Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: International conference on learning representations

  15. 15.

    Toğaçar M, Ergen B (2018) Deep learning approach for classification of breast cancer. In: 2018 International conference on artificial ıntelligence and data processing (IDAP). pp 1–5

  16. 16.

    Guan Q, Wang Y, Ping B et al (2019) Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study. J Cancer 10:4876–4882. https://doi.org/10.7150/jca.28769

    Article  Google Scholar 

  17. 17.

    Cengil E, Çınar A (2016) A new approach for image classification: convolutional neural network. Eur J Tech EJT 6:96–103

    Google Scholar 

  18. 18.

    Demir F, Şengür A, Bajaj V, Polat K (2019) Towards the classification of heart sounds based on convolutional deep neural network. Heal Inf Sci Syst 7:16. https://doi.org/10.1007/s13755-019-0078-0

    Article  Google Scholar 

  19. 19.

    Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  20. 20.

    Başaran E, Cömert Z, Çelik Y (2020) Convolutional neural network approach for automatic tympanic membrane detection and classification. Biomed Signal Process Control 56:101734. https://doi.org/10.1016/j.bspc.2019.101734

    Article  Google Scholar 

  21. 21.

    Deniz E, Sengür A, Kadiroglu Z et al (2018) Transfer learning based histopathologic image classification for breast cancer detection. Heal Inf Sci Syst 6:18. https://doi.org/10.1007/s13755-018-0057-x

    Article  Google Scholar 

  22. 22.

    Lu S, Lu Z, Zhang Y-D (2018) Pathological brain detection based on AlexNet and transfer learning. J Comput Sci. https://doi.org/10.1016/j.jocs.2018.11.008

    Article  Google Scholar 

  23. 23.

    Gu J, Wang Z, Kuen J et al (2018) Recent advances in convolutional neural networks. Pattern Recognit 77:354–377. https://doi.org/10.1016/j.patcog.2017.10.013

    Article  Google Scholar 

  24. 24.

    Sertkaya ME, Ergen B, Togacar M (2019) Diagnosis of eye retinal diseases based on convolutional neural networks using optical coherence ımages. In: 2019 23rd ınternational conference electronics, pp 1–5

  25. 25.

    Celik Y, Talo M, Yildirim O et al (2020) Automated invasive ductal carcinoma detection based using deep transfer learning with whole-slide images. Pattern Recognit Lett 133:232–239. https://doi.org/10.1016/j.patrec.2020.03.011

    Article  Google Scholar 

  26. 26.

    Ma Y, Zhang Q, Li D, Tian Y (2019) Linex support vector machine for large-scale classification. IEEE Access 7:70319–70331. https://doi.org/10.1109/access.2019.2919185

    Article  Google Scholar 

  27. 27.

    Bisgin H, Bera T, Ding H et al (2018) Comparing SVM and ANN based machine learning methods for species identification of food contaminating beetles. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-24926-7

    Article  Google Scholar 

  28. 28.

    Toğaçar M, Ergen B, Cömert Z (2020) Waste classification using AutoEncoder network with integrated feature selection method in convolutional neural network models. Measurement 153:107459. https://doi.org/10.1016/j.measurement.2019.107459

    Article  Google Scholar 

  29. 29.

    Awad M, Khanna R (2015) Support vector machines for classification BT—efficient learning machines: theories, concepts, and applications for engineers and system designers. In: Awad M, Khanna R (eds). Apress, Berkeley, CA, pp 39–66

  30. 30.

    Doǧan Ü, Glasmachers T, Igel C (2016) A unified view on multi-class support vector classification. J Mach Learn Res 17:1–32

    MathSciNet  MATH  Google Scholar 

  31. 31.

    (2020) DeepDream | TensorFlow Core. In: TensofFlow. https://www.tensorflow.org/tutorials/generative/deepdream. Accessed 30 Aug 2020

  32. 32.

    Suzuki K, Roseboom W, Schwartzman DJ, Seth AK (2017) A deep-dream virtual reality platform for studying altered perceptual phenomenology. Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-16316-2

    Article  Google Scholar 

  33. 33.

    Bardak T, Bardak S (2017) Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques. J Polytech 20:979–984. https://doi.org/10.2339/politeknik.369132

    Article  Google Scholar 

  34. 34.

    Arnal J, Súcar L (2020) Hybrid filter based on fuzzy techniques for mixed noise reduction in color images. Appl Sci. https://doi.org/10.3390/app10010243

    Article  Google Scholar 

  35. 35.

    Yun HJ, Wu ZY, Wang GJ et al (2016) A novel enhancement algorithm combined with improved fuzzy set theory for low illumination images. Math Probl Eng. https://doi.org/10.1155/2016/8598917

    Article  Google Scholar 

  36. 36.

    Patrascu V (2019) Fuzzy color ımage enhancement algorithm. In: Github. https://github.com/WaseemKn/FuzzyColorImageEnhancement-FuzzyLogicCourse-ITE5thYear. Accessed 1 Mar 2020

  37. 37.

    Pilly PK, Stepp ND, Liapis Y et al (2019) Hypercolumn sparsification for low-power convolutional neural networks. J Emerg Technol Comput Syst 15:20. https://doi.org/10.1145/3304104

    Article  Google Scholar 

  38. 38.

    Hariharan B, Arbeláez P, Girshick R, Malik J (2015) Hypercolumns for object segmentation and fine-grained localization. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. https://doi.org/10.1109/cvpr.2015.7298642

    Article  Google Scholar 

  39. 39.

    Sreeraman R (2018) Hypercolumn test VGG16. In: Kaggle. https://www.kaggle.com/rupeshs/hypercolumn-test-vgg16. Accessed 1 Sep 2020

  40. 40.

    Hariharan B, Arbeláez P, Girshick R, Malik J (2017) Object instance segmentation and fine-grained localization using hypercolumns. IEEE Trans Pattern Anal Mach Intell 39:627–639. https://doi.org/10.1109/tpami.2016.2578328

    Article  Google Scholar 

  41. 41.

    Gueorguieva N, Valova I, Klusek D (2020) Solving large scale classification problems with stochastic based optimization. Procedia Comput Sci 168:26–33. https://doi.org/10.1016/j.procs.2020.02.247

    Article  Google Scholar 

  42. 42.

    Rzecki K, Sośnicki T, Baran M, Niedźwiecki M, Król M, Łojewski T, Acharya UR, Yildirim Ö, Pławiak P (2018) Application of computational intelligence methods for the automated identification of paper-ink samples based on LIBS. Sensors 18:3670. https://doi.org/10.3390/s18113670

    Article  Google Scholar 

  43. 43.

    Zhuo L, Zhang B, Chen C et al (2019) Calibrated stochastic gradient descent for convolutional neural networks. Proc AAAI Conf Artif Intell 33:9348–9355. https://doi.org/10.1609/aaai.v33i01.33019348

    Article  Google Scholar 

  44. 44.

    Schneider A, Hommel G, Blettner M (2010) Linear regression analysis: part 14 of a series on evaluation of scientific publications. Dtsch Arztebl Int 107:776–782. https://doi.org/10.3238/arztebl.2010.0776

    Article  Google Scholar 

  45. 45.

    Hoffman JIE (2019) Chapter 27—linear regression. In: Hoffman JIE (ed) Basic biostatistics for medical and biomedical practitioners, 2nd edn. Academic Press, Cambridge, pp 445–489

    Google Scholar 

  46. 46.

    (2020) Feature selection: linear regression. In: Scikit - Learn. https://scikit-learn.org/stable/modules/feature_selection.html. Accessed 3 Mar 2020

  47. 47.

    Abdullah AO, Ali MA, Karabatak M, Sengur A (2018) A comparative analysis of common YouTube comment spam filtering techniques. In: 2018 6th ınternational symposium on digital forensic and security (ISDFS), pp 1–5

  48. 48.

    Günay M, Köseoğlu M, Yıldırım Ö (2020) Classification of hand-drawn basic circuit components using convolutional neural networks. In: 2020 ınternational congress on human-computer ınteraction, optimization and robotic applications (HORA), pp 1–5

  49. 49.

    Parvandeh S, Yeh H-W, Paulus MP, McKinney BA (2020) Consensus features nested cross-validation. bioRxiv 2019.12.31.891895. https://doi.org/https://doi.org/10.1101/2019.12.31.891895

  50. 50.

    Yadav S, Shukla S (2016) Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In: 2016 IEEE 6th ınternational conference on advanced computing (IACC), pp 78–83

  51. 51.

    (2020) Alzheimer’s Stages - Early, Middle, Late Dementia Symptoms | alz.org. In: Alzheimer’s Assoc. https://www.alz.org/alzheimers-dementia/stages. Accessed 4 Mar 2020

Download references

Funding

There is no funding source for this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mesut Toğaçar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to this paper.

Ethical approval

This article does not contain any data, or other information from studies or experimentation, with the involvement of human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toğaçar, M., Cömert, Z. & Ergen, B. Enhancing of dataset using DeepDream, fuzzy color image enhancement and hypercolumn techniques to detection of the Alzheimer's disease stages by deep learning model. Neural Comput & Applic (2021). https://doi.org/10.1007/s00521-021-05758-5

Download citation

Keywords

  • Decision-making
  • Alzheimer's disease
  • DeepDream learning and hypercolumn technique
  • Fuzzy color image enhancement