Skip to main content
Log in

Fixed-time control of competitive complex networks

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper aims to establish several synchronization criteria of competitive complex networks (CCNs) by using fixed-time (FDT) control. In CCNs, the variations of different nodes are diverse if they are influenced by external environment. Here, we design two types of controller to deal with the different variations of nodes. Meanwhile, these designed controllers guarantee the synchronization of the CCNs in a given time. The estimated settling time improves corresponding results in the literature. Furthermore, based on rigorous mathematical proof and the structured comparison system, several FDT synchronization criteria are obtained. Some comparisons are presented to show the advantages of these new theoretical results. The validity of our theoretical results is illustrated by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xie Q, Chen G, Bollt EM (2002) Hybrid chaos synchronization and its application in information processing. Math Comput Model 35(1):145–163

    Article  MathSciNet  Google Scholar 

  2. Yang X, Liu Y, Cao J, Rutkowski L (2020) Synchronization of coupled time-delay neural networks with mode-dependent average dwell time switching. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.2968342

    Article  MathSciNet  Google Scholar 

  3. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Image encryption process based on chaotic synchronization phenomena. Signal Process 93(5):1328–1340

    Article  Google Scholar 

  4. Yang X, Xiaodi Li X, Lu J, Cheng Z (2020) Synchronization of time-delayed complex networks with switching topology via hybrid actuator fault and impulsive effects control. IEEE Trans Cybern 50(9):4043–4052

    Article  Google Scholar 

  5. Wen G, Yu W, Hu G, Cao J, Yu X (2015) Pinning synchronization of directed networks with switching topologies: a multiple lyapunov functions approach. IEEE Trans Neural Netw Learn Syst 26(12):3239–3250

    Article  MathSciNet  Google Scholar 

  6. Yang X, Xu C, Feng J, Lu J (2018) General synchronization criteria for nonlinear Markovian systems with random delays. J Frankl Inst 355:1394–1410

    Article  MathSciNet  Google Scholar 

  7. Zhang W, Yang S, Li C, Li H (2020) Finite-time synchronization of delayed memristive neural networks via 1-norm-based analytical approach. Neural Comput Applic 32:4951–4960

    Article  Google Scholar 

  8. Boubellouta A, Boulkroune A (2019) Intelligent fractional-order control-based projective synchronization for chaotic optical systems. Soft Comput 23:5367–5384

    Article  Google Scholar 

  9. Yang X, Wan X, Cheng Z, Cao J, Liu Y, Rutkowski L (2020) Synchronization of switched discrete-time neural networks via quantized output control with actuator fault. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3017171

    Article  Google Scholar 

  10. Zhang W, Yang X, Xu C, Feng J, Li C (2018) Finite-time synchronization of discontinuous neural networks with delays and mismatched parameters. IEEE Trans Neural Netw Learn Syst 29(8):3761–3771

    Article  MathSciNet  Google Scholar 

  11. Yang X, Cao J (2014) Hybrid adaptive and impulsive synchronization of uncertain complex networks with delays and general uncertain perturbations. Appl Math Comput 227:480–493

    MathSciNet  MATH  Google Scholar 

  12. Yang S, Li C, Huang T (2017) Synchronization of coupled memristive chaotic circuits via state-dependent impulsive control. Nonlinear Dyn 88:115–129

    Article  Google Scholar 

  13. Zhang W, Li H, Li C, Li Z, Yang X (2019) Fixed-time synchronization criteria for complex networks via quantized pinning control. ISA Trans 91(2019):151–156

    Article  Google Scholar 

  14. Xiong X, Yang X, Cao J, Tang R (2018) Finite-time control for a class of hybrid systems via quantized intermittent control. Sci China Inf Sci. https://doi.org/10.1007/s11432-018-2727-5

    Article  Google Scholar 

  15. Zhou Y, Wan X, Huang C, Yang X (2020) Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control. Appl Math Comput 376:125157

    MathSciNet  MATH  Google Scholar 

  16. Boubellouta A, Zouari F, Boulkroune A (2019) Intelligent fuzzy controller for chaos synchronization of uncertain fractional-order chaotic systems with input nonlinearities. Int J Gen Syst 48(3):211–234

    Article  MathSciNet  Google Scholar 

  17. Yang X, Cheng Z, Li X, Ma T (2019) Exponential synchronization of coupled neutral-type neural networks with mixed delays via quantized output control. J Frankl Inst 356(15):8138–8153

    Article  MathSciNet  Google Scholar 

  18. Aghababa MP, Khanmohammadi S, Alizadeh G (2011) Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique. Appl Math Modell 35(6):3080–3091

    Article  MathSciNet  Google Scholar 

  19. Polyakov A, Efimov D, Perruquetti W (2015) Finite-time and fixed-time stabilization: Implicit Lyapunov function approach. Automatica 51:332–340

    Article  MathSciNet  Google Scholar 

  20. Xu C, Yang X, Lu J, Feng J, Alsaadi FE, Hayat T (2017) Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans Cybern 48(10):3021–3027

    Article  Google Scholar 

  21. Tang R, Yang X, Wan X (2019) Finite-time cluster synchronization for a class of fuzzy cellular neural networks via non-chattering quantized controllers. Neural Netw 113:79–90

    Article  Google Scholar 

  22. Polyakov A (2012) Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans Autom Control 57(8):2106–2110

    Article  MathSciNet  Google Scholar 

  23. Cao J, Li R (2017) Fixed-time synchronization of delayed memristor-based recurrent neural networks. Sci China Inf Sci 60(3):032201

    Article  MathSciNet  Google Scholar 

  24. Liu X, Cao J, Yu W, Song Q (2016) Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans Cybern 46(10):2360–2371

    Article  Google Scholar 

  25. Xing W, Shi P, Song H, Zhao Y, Li L (2019) Global pinning synchronization of stochastic delayed complex networks. Inf Sci 490:113–125

    Article  MathSciNet  Google Scholar 

  26. Khanzadeh A, Pourgholi M (2017) Fixed-time sliding mode controller design for synchronization of complex dynamical networks. Nonlinear Dyn 88:2637–2649

    Article  MathSciNet  Google Scholar 

  27. Yang X, Lam J, Ho DWC, Feng Z (2017) Fixed-time synchronization of complex networks with impulsive effects via nonchattering control. IEEE Trans Autom Control 62(11):5511–5521

    Article  MathSciNet  Google Scholar 

  28. Xu Y, Wu X, Li N, Liu L, Xie C, Li C (2019) Fixed-time synchronization of complex networks with a simpler nonchattering controller. IEEE Trans Circuits Syst II. https://doi.org/10.1109/TCSII.2019.2920035

    Article  Google Scholar 

  29. Liu X, Chen T (2018) Finite-time and fixed-time cluster synchronization with or without pinning control. IEEE Trans Cybern 48(1):240–252

    Article  MathSciNet  Google Scholar 

  30. Zhang W, Yang X, Li C (2019) Fixed-time stochastic synchronization of complex networks via continuous control. IEEE Trans Cybern 49(8):3099–3104

    Article  Google Scholar 

  31. Aouiti C, Assali EA, Chérif F, Zeglaoui A (2019) Fixed-time synchronization of competitive neural networks with proportional delays and impulsive effect. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04654-3

    Article  Google Scholar 

  32. Aouiti C, Miaadi F (2020) A new fixed-time stabilization approach for neural networks with time-varying delays. Neural Comput Appl 32:3295–3309

    Article  Google Scholar 

  33. Ni J, Liu L, Liu C, Hu X, Li S (2017) Fast fixed-time nonsingular terminal sliding model control and its application to chaos supperession in power system. IEEE Trans Circuits Syst II 64(2):151–155

    Article  Google Scholar 

  34. Xu Y, Meng D, Xie C, You G, Zhou W (2018) A class of fast fixed-time synchronization control for the delayed neural network. J Frankl Inst 355:164–176

    Article  MathSciNet  Google Scholar 

  35. Gao J, Fu Z, Zhang S (2019) Adaptive fixed-time attitude tracking control for rigid spacecraft with actuator faults. IEEE Trans Ind Electron 66(9):7141–7149

    Article  Google Scholar 

  36. Sun H, Hou L, Li C (2019) Synchronization of single-degree-of-freedom oscillators via neural network based on fixed-time terminal sliding mode control scheme. Neural Comput Appl 31:6365–6372

    Article  Google Scholar 

  37. Wang X, She K, Zhong S, Yang H (2019) Lag synchronization analysis of general complex networks with multiple time-varying delays via pinning control strategy. Neural Comput Appl 31:43–53

    Article  Google Scholar 

  38. Shi Y, Zhu P (2014) Synchronization of memristive competitive neural networks with different time scales. Neural Comput Appl 25:1163–1168

    Article  Google Scholar 

  39. Zhou W, Wang T, Mou J (2012) Synchronization control for the competitive complex networks with time delay and stochastic effects. Commun Nonlinear Sci Numer Simul 17:3417–3426

    Article  MathSciNet  Google Scholar 

  40. Khalil HK, Grizzle JW (2002) Nonlinear systems. Prentice-Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (NSFC) (Nos. 61673078, 61903052, 62003065), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202000510), the Basic and Frontier Research Project of Chongqing (No. cstc2018jcyjAX0369), and the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (No. 2018MMAEZD01), Foundation Project of Chongqing Normal University (No. 20XLB003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinsong Yang.

Ethics declarations

Conflict of interest

The authors declare that there is no commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Yang, X., Yang, S. et al. Fixed-time control of competitive complex networks. Neural Comput & Applic 33, 7943–7951 (2021). https://doi.org/10.1007/s00521-020-05539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05539-6

Keywords

Navigation