Skip to main content
Log in

An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

A conventional LASSO (least absolute shrinkage and selection operator) regression model utilizing the Pythagorean fuzzy sets in a system reliability analysis is developed. Overall, the Pythagorean fuzzy multivariate regression analysis enables decision makers to correctly identify the relationships between a set of responses in the form of fuzzy or non-fuzzy interpretive variables. The interpretability of the model is significantly improved by the proposed Pythagorean fuzzy LASSO regression model (PFLRM). Thus, a system reliability analysis is considered as an application of the study to evaluate the efficiency and effectiveness of the proposed PFLRM. There is no doubt that a system reliability analysis is vital to improve the safety performance of chemical processing industries, where an extensive number of industrial accidents occur annually. These accidents have subsequently highlighted the failure of some of the intervention actions to keep the systems safely in operation. The results illustrate a better performance with higher accuracy with the proposed PFLRM compared with the existing number of fuzzy regression models, particularly in the availability of non-informative variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

CV:

Validation criterion

FLRM:

Fuzzy linear regression method

HFACS:

Human factor analysis and classification system

IFN:

Intuitionistic fuzzy numbers

IFS:

Intuitionistic fuzzy set

LASSO:

Least absolute shrinkage and selection operator

MARE:

Absolute relative error

OI:

Organizational influences

PFLRM:

Pythagorean fuzzy LASSO regression model

PFN:

Pythagorean fuzzy numbers

PFS:

Pythagorean fuzzy set

PUA:

Preconditions for unsafe acts

RMSE:

Root mean square error

SF:

Supervisory factors

SM:

Similarity measure

UA:

Unsafe acts

References

  1. Yazdi M, Adesina KA, Korhan O, Nikfar F (2019) Learning from fire accident at bouali sina petrochemical complex plant. J Fail Anal Prev. https://doi.org/10.1007/s11668-019-00769-w

    Article  Google Scholar 

  2. Aleixandre-Tudó JL, Alvarez I, García MJ, Lizama V, Aleixandre JL (2015) Application of multivariate regression methods to predict sensory quality of red wines. Czech J Food Sci 33:217–227. https://doi.org/10.17221/370/2014-CJFS

    Article  Google Scholar 

  3. Hesamian G, Akbari MG (2019) Fuzzy Lasso regression model with exact explanatory variables and fuzzy responses. Int J Approx Reason 115:290–300. https://doi.org/10.1016/j.ijar.2019.10.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Yazdi M (2019a) A perceptual computing—based method to prioritize intervention actions in the probabilistic risk assessment techniques. Qual Reliab Eng Int. https://doi.org/10.1002/qre.2566

    Article  Google Scholar 

  5. Fan J, Li R (2001) Variable selection via nonconcave penalized. J Am Stat Assoc 96:1348–1360

    Article  Google Scholar 

  6. Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Ann Stat. https://doi.org/10.1214/09-AOS729

    Article  MathSciNet  MATH  Google Scholar 

  7. Tibshirani R (1996) Regression shrinkage and selection Via the Lasso. J R Stat Soc Ser B 58:267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

    Article  MathSciNet  MATH  Google Scholar 

  8. Meier L, Van De Geer S, Bühlmann P (2008) The group lasso for logistic regression. J R Stat Soc Ser B Stat Methodol 70:53–71. https://doi.org/10.1111/j.1467-9868.2007.00627.x

    Article  MathSciNet  MATH  Google Scholar 

  9. Meinshausen N, Yu B (2009) Lasso-type recovery of sparse representations for high-dimensional data. Ann Stat 37:246–270. https://doi.org/10.1214/07-AOS582

    Article  MathSciNet  MATH  Google Scholar 

  10. Tibshirani R, Saunders M, Rosset S, Zhu J, Knight K (2005) Sparsity and smoothness via the fused lasso. J R Stat Soc Ser B Stat Methodol 67:91–108. https://doi.org/10.1111/j.1467-9868.2005.00490.x

    Article  MathSciNet  MATH  Google Scholar 

  11. Tanaka H, Uejima S, Asai K (1982) Linear regression analysis with Fuzzy model. IEEE Trans Syst Man Cybern 75:903–907

    MATH  Google Scholar 

  12. Yazdi M, Nedjati A, Abbassi R (2019) Fuzzy dynamic risk-based maintenance investment optimization for offshore process facilities. J Loss Prev Process Ind 57:194–207. https://doi.org/10.1016/J.JLP.2018.11.014

    Article  Google Scholar 

  13. Hesamian G, Akbari MG, Asadollahi M (2017) Fuzzy semi-parametric partially linear model with fuzzy inputs and fuzzy outputs. Expert Syst Appl 71:230–239. https://doi.org/10.1016/j.eswa.2016.11.032

    Article  Google Scholar 

  14. Chachi J, Roozbeh M (2017) A fuzzy robust regression approach applied to bedload transport data. Commun Stat Simul Comput 46:1703–1714. https://doi.org/10.1080/03610918.2015.1010002

    Article  MathSciNet  MATH  Google Scholar 

  15. Alfonso G, de Hierro AFRL, Roldán C (2017) A fuzzy regression model based on finite fuzzy numbers and its application to real-world financial data. J Comput Appl Math 318:47–58. https://doi.org/10.1016/j.cam.2016.12.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Li J, Zeng W, Xie J, Yin Q (2016) A new fuzzy regression model based on least absolute deviation. Eng Appl Artif Intell 52:54–64. https://doi.org/10.1016/j.engappai.2016.02.009

    Article  Google Scholar 

  17. De Hierro AFRL, Martínez-Moreno J, Aguilar-Peña C, De Hierro CR (2016) Estimation of a fuzzy regression model using Fuzzy distances. IEEE Trans Fuzzy Syst 24:344–359. https://doi.org/10.1109/TFUZZ.2015.2455533

    Article  Google Scholar 

  18. Chachi J, Taheri SM (2016) Multiple fuzzy regression model for fuzzy input-output data. Iran J Fuzzy Syst 13:63–78. https://doi.org/10.22111/ijfs.2016.2596

    Article  MathSciNet  MATH  Google Scholar 

  19. Jung HY, Yoon JH, Choi SH (2015) Fuzzy linear regression using rank transform method. Fuzzy Sets Syst 274:97–108. https://doi.org/10.1016/j.fss.2014.11.004

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng W, Feng Q, Li J (2017) Fuzzy least absolute linear regression. Appl Soft Comput J 52:1009–1019. https://doi.org/10.1016/j.asoc.2016.09.029

    Article  Google Scholar 

  21. Kelkinnama M, Taheri SM (2012) Fuzzy least-absolutes regression using shape preserving operations. Inf Sci (Ny) 214:105–120. https://doi.org/10.1016/j.ins.2012.04.017

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee WJ, Jung HY, Yoon JH, Choi SH (2015) The statistical inferences of fuzzy regression based on bootstrap techniques. Soft Comput 19:883–890. https://doi.org/10.1007/s00500-014-1415-5

    Article  MATH  Google Scholar 

  23. Stehlík M, Economou P, Papić L, Aronov J, Nicolis O, Antoch J, Cézová E, Kiseľák J (2018) Statistical testing of availability for mining technological systems with air quality constraints. Appl Stoch Model Bus Ind 34:278–292. https://doi.org/10.1002/asmb.2337

    Article  MathSciNet  MATH  Google Scholar 

  24. Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  25. Yazdi M, Daneshvar S, Setareh H (2017) An extension to fuzzy developed failure mode and effects analysis ( FDFMEA ) application for aircraft landing system. Saf Sci 98:113–123. https://doi.org/10.1016/j.ssci.2017.06.009

    Article  Google Scholar 

  26. Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20:87–96. https://doi.org/10.1016/S0165-0114(86)80034-3

    Article  MATH  Google Scholar 

  27. Deng Y (2012) D numbers: theory and applications background knowledge. J Inf Comput Sci 9:2421–2428

    Google Scholar 

  28. Yager RR (2014) Pythagorean membership grades in multicriteria decision making. IEEE Trans Fuzzy Syst 22:958–965. https://doi.org/10.1109/TFUZZ.2013.2278989

    Article  Google Scholar 

  29. Peng X, Selvachandran G (2019) Pythagorean fuzzy set: state of the art and future directions. Artif Intell Rev 52:1873–1927. https://doi.org/10.1007/s10462-017-9596-9

    Article  Google Scholar 

  30. Zadeh LA (2015) Fuzzy logic—A personal perspective. Fuzzy Sets Syst 281:4–20. https://doi.org/10.1016/j.fss.2015.05.009

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu Z, Yager RR (2006) Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst 35:417–433. https://doi.org/10.1080/03081070600574353

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang X, Xu Z (2014) Extension of TOPSIS to multiple criteria decision making with pythagorean fuzzy sets. Int J Intell Syst 29:1061–1078. https://doi.org/10.1002/int.21676

    Article  Google Scholar 

  33. Yager RR (2013) Pythagorean fuzzy subsets, In: 2013 Jt. IFSA World Congr. NAFIPS Annu. Meet., IEEE, 2013, pp. 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375

  34. Yazdi M, Khan F, Abbassi R, Rusli R (2020) Improved DEMATEL methodology for effective safety management decision-making. Saf Sci 127. https://doi.org/10.1016/j.ssci.2020.104705

  35. Yazdi M (2019b) Acquiring and sharing tacit knowledge in failure diagnosis analysis using intuitionistic and pythagorean assessments. J Fail Anal Prev. https://doi.org/10.1007/s11668-019-00599-w

    Article  Google Scholar 

  36. Peng X, Yang Y (2014) Some results for pythagorean fuzzy sets. Int J Intell Syst 29:495–524. https://doi.org/10.1002/int

    Article  Google Scholar 

  37. Yu X, Xu Z (2013) Prioritized intuitionistic fuzzy aggregation operators. Inf Fusion 14:108–116. https://doi.org/10.1016/j.inffus.2012.01.011

    Article  Google Scholar 

  38. Chen T (2019) Multiple criteria group decision making using a parametric linear programming technique for multidimensional analysis of preference under uncertainty of pythagorean fuzziness. IEEE Access 7:174108–174128. https://doi.org/10.1109/ACCESS.2019.2957161

    Article  Google Scholar 

  39. Zhou L, Dai G, Qin R, Tang M, Qiu J (2018) Risk analysis of gob coal spontaneous combustion in methane-rich, combustion-prone coal seam based on intuitionistic Fuzzy DEMATEL. J Fail Anal Prev 18:975–987. https://doi.org/10.1007/s11668-018-0492-7

    Article  Google Scholar 

  40. GAMS (2020) https://www.gams.com. Accessed 16 Jan 2020

  41. H. Department (2016) Bouali Sina Fire Accident Report, Mahshahr

  42. Shappell SA, Wiegmann DA (2000) Applying Reason: the human factors analysis and classification system (HFACS). Hum Factors Aerosp Saf An Int J 1:59–86

    Google Scholar 

  43. Rausand M (2011) Risk assessment: theory methods and applications. Wiley, New York

    Book  Google Scholar 

  44. Yazdi M (2019c) Introducing a heuristic approach to enhance the reliability of system safety assessment. Qual Reliab Eng Int 35:1–27. https://doi.org/10.1002/qre.2545

    Article  Google Scholar 

  45. Daneshvar S, Yazdi M, Adesina KA (2020) Fuzzy smart failure modes and effects analysis to improve safety performance of system: case study of an aircraft landing system. Qual Reliab Eng Int 36:1–20. https://doi.org/10.1002/qre.2607

    Article  Google Scholar 

  46. Yazdi M, Hafezi P, Abbassi R (2019) A methodology for enhancing the reliability of expert system applications in probabilistic risk assessment. J Loss Prev Process Ind 58:51–59. https://doi.org/10.1016/j.jlp.2019.02.001

    Article  Google Scholar 

  47. Yazdi M (2018) Footprint of knowledge acquisition improvement in failure diagnosis analysis. Qual Reliab Eng Int 35:1–18

    MathSciNet  Google Scholar 

  48. Yazdi M (2019d) Ignorance-aware safety and reliability analysis: a heuristic approach. Qual Reliab Eng Int 36:652–674. https://doi.org/10.1002/qre.2597

    Article  MathSciNet  Google Scholar 

  49. Kula KŞ, Apaydin A (2008) Fuzzy robust regression analysis based on the ranking of fuzzy sets. Int J Uncertain Fuzz Knowl Based Syst 16:663–681. https://doi.org/10.1142/S0218488508005558

    Article  MathSciNet  MATH  Google Scholar 

  50. Choi SH, Yoon JH (2010) General fuzzy regression using least squares method. Int J Syst Sci 41:477–485. https://doi.org/10.1080/00207720902774813

    Article  MATH  Google Scholar 

  51. Sugeno M (1985) An introductory survey of fuzzy control. Inf Sci (Ny) 36:59–83. https://doi.org/10.1016/0020-0255(85)90026-X

    Article  MathSciNet  MATH  Google Scholar 

  52. Choi SH, Buckley JJ (2008) Fuzzy regression using least absolute deviation estimators. Soft Comput 12:257–263. https://doi.org/10.1007/s00500-007-0198-3

    Article  Google Scholar 

  53. Taheri SM, Kelkinnama M (2012) Fuzzy linear regression based on least absolutes deviations. Iran J Fuzzy Syst 9:121–140. https://doi.org/10.22111/ijfs.2012.230

    Article  MathSciNet  MATH  Google Scholar 

  54. Yazdi M (2019e) A review paper to examine the validity of Bayesian network to build rational consensus in subjective probabilistic failure analysis. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-018-00757-7

    Article  Google Scholar 

  55. Yazdi M, Kabir S, Walker M (2019) Uncertainty handling in fault tree based risk assessment: state of the art and future perspectives. Process Saf Environ Prot 131:89–104. https://doi.org/10.1016/j.psep.2019.09.003

    Article  Google Scholar 

  56. Park T, Casella G (2008) The bayesian lasso. J Am Stat Assoc 103:681–686. https://doi.org/10.1198/016214508000000337

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M., Golilarz, N.A., Nedjati, A. et al. An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis. Neural Comput & Applic 33, 7913–7928 (2021). https://doi.org/10.1007/s00521-020-05537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05537-8

Keywords

Navigation