Skip to main content

Advertisement

Log in

A permutation entropy-based EMD–ANN forecasting ensemble approach for wind speed prediction

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Accurate wind speed prediction is critical for many tasks, especially for air pollution modelling. Data-driven approaches are particularly interesting but the stochastic nature of wind renders prediction tasks difficult. Therefore, a combination of methods could be useful to obtain better results. To overcome this difficulty, a hybrid wind speed forecasting approach is proposed in this work. The Bay of Algeciras, Spain, was used as a case study, and the database was collected from a weather monitoring station. The study consists of combining a pre-processing method, the empirical mode decomposition (EMD), an information-based method, the permutation entropy (PE), and a machine learning technique (artificial neural networks, ANNs), using an ensemble learning methodology. Different prediction horizons were considered: ph-hours (ph = 1, 2, 8, 24) ahead and 8-h and 24-h average. The introduction of PE significantly reduces the computational cost and the predictive risk in comparison with traditional EMD methodology, by reducing the number of the decomposed components to be predicted. Moreover, the experimental results demonstrated that the EMD–PE–ANN approach outperforms the prediction performance of the single ANN models in all the prediction horizons tested. The EMD–PE–ANN model is capable to achieve a correlation coefficient of 0.981 and 0.807 for short-term (1 h) and medium-term (24 h) predictions, respectively, significantly overcoming those obtained by a single ANN model (0.929 and 0.503). These results show that the proposed model reaches significant improvements when the prediction horizon increases, where forecasting models tend to worsen their prediction performance. Therefore, the proposed EMD–PE–ANN approach may become a powerful tool for wind speed forecasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ulkat D, Günay ME (2018) Prediction of mean monthly wind speed and optimization of wind power by artificial neural networks using geographical and atmospheric variables: case of Aegean Region of Turkey. Neural Comput Appl 30:3037–3048. https://doi.org/10.1007/s00521-017-2895-x

    Article  Google Scholar 

  2. Dominick D, Latif MT, Juahir H, Aris AZ, Zain SM (2012) An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain Environ Res 22:305–315

    Google Scholar 

  3. Turias IJ, González FJ, Martin ML, Galindo PL (2008) Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar Region, Spain: a multiple comparison strategy. Environ Monit Assess 143:131–146

    Article  Google Scholar 

  4. Martin ML, Turias IJI, Gonzalez FJ et al (2008) Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks. Chemosphere 70:1190–1195. https://doi.org/10.1016/j.chemosphere.2007.08.039

    Article  Google Scholar 

  5. Muñoz E, Martín ML, Turias IJI et al (2014) Prediction of PM10 and SO2 exceedances to control air pollution in the Bay of Algeciras, Spain. Stoch Environ Res Risk Assess 28:1409–1420. https://doi.org/10.1007/s00477-013-0827-6

    Article  Google Scholar 

  6. González-Enrique J, Turias IJ, Ruiz-Aguilar JJ et al (2019) Spatial and meteorological relevance in NO2 estimations: a case study in the Bay of Algeciras (Spain). Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-018-01644-0

    Article  Google Scholar 

  7. Bludszuweit H, Dominguez-Navarro JA, Llombart A (2008) Statistical analysis of wind power forecast error. IEEE Trans Power Syst 23:983–991. https://doi.org/10.1109/TPWRS.2008.922526

    Article  Google Scholar 

  8. Liu H, Tian H, Pan D, Li Y (2013) Forecasting models for wind speed using wavelet, wavelet packet, time series and artificial neural networks. Appl Energy 107:191–208. https://doi.org/10.1016/J.APENERGY.2013.02.002

    Article  Google Scholar 

  9. Ailliot P, Monbet V, Prevosto M (2006) An autoregressive model with time-varying coefficients for wind fields. Environmetrics 17:107–117. https://doi.org/10.1002/env.753

    Article  MathSciNet  Google Scholar 

  10. Marugán AP, Márquez FPG, Perez JMP, Ruiz-Hernández D (2018) A survey of artificial neural network in wind energy systems. Appl Energy 228:1822–1836. https://doi.org/10.1016/J.APENERGY.2018.07.084

    Article  Google Scholar 

  11. Bivona S, Bonanno G, Burlon R et al (2011) Stochastic models for wind speed forecasting. Energy Convers Manag 52:1157–1165. https://doi.org/10.1016/J.ENCONMAN.2010.09.010

    Article  Google Scholar 

  12. Shukur OB, Lee MH (2015) Daily wind speed forecasting through hybrid KF–ANN model based on ARIMA. Renew Energy 76:637–647

    Article  Google Scholar 

  13. Zhang C, Wei H, Zhao J et al (2016) Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew Energy 96:727–737. https://doi.org/10.1016/J.RENENE.2016.05.023

    Article  Google Scholar 

  14. Jamil M, Zeeshan M (2019) A comparative analysis of ANN and chaotic approach-based wind speed prediction in India. Neural Comput Appl 31:6807–6819. https://doi.org/10.1007/s00521-018-3513-2

    Article  Google Scholar 

  15. Okumus I, Dinler A (2016) Current status of wind energy forecasting and a hybrid method for hourly predictions. Energy Convers Manag 123:362–371. https://doi.org/10.1016/J.ENCONMAN.2016.06.053

    Article  Google Scholar 

  16. Lawan SM, Abidin WAWZ, Chai WY et al (2014) Different models of wind speed prediction: a comprehensive review. Int J Sci Eng Res 5:1760–1768

    Google Scholar 

  17. Li G, Shi J, Zhou J (2011) Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew Energy 36:352–359. https://doi.org/10.1016/J.RENENE.2010.06.049

    Article  Google Scholar 

  18. Tascikaraoglu A, Uzunoglu M (2014) A review of combined approaches for prediction of short-term wind speed and power. Renew Sustain Energy Rev 34:243–254. https://doi.org/10.1016/J.RSER.2014.03.033

    Article  Google Scholar 

  19. Guo Z, Wu J, Lu H, Wang J (2011) A case study on a hybrid wind speed forecasting method using BP neural network. Knowl-Based Syst 24:1048–1056. https://doi.org/10.1016/J.KNOSYS.2011.04.019

    Article  Google Scholar 

  20. Liu H, Chen C, Tian H, Li Y (2012) A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew Energy 48:545–556. https://doi.org/10.1016/J.RENENE.2012.06.012

    Article  Google Scholar 

  21. Shi J, Guo J, Zheng S (2012) Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 16:3471–3480

    Article  Google Scholar 

  22. Li H, Wang J, Lu H, Guo Z (2018) Research and application of a combined model based on variable weight for short term wind speed forecasting. Renew Energy 116:669–684. https://doi.org/10.1016/j.renene.2017.09.089

    Article  Google Scholar 

  23. Zhang W, Qu Z, Zhang K et al (2017) A combined model based on CEEMDAN and modified flower pollination algorithm for wind speed forecasting. Energy Convers Manag 136:439–451. https://doi.org/10.1016/j.enconman.2017.01.022

    Article  Google Scholar 

  24. Qu Z, Mao W, Zhang K et al (2019) Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network. Renew Energy 133:919–929. https://doi.org/10.1016/j.renene.2018.10.043

    Article  Google Scholar 

  25. Liu H, Mi X, Li Y (2018) An experimental investigation of three new hybrid wind speed forecasting models using multi-decomposing strategy and ELM algorithm. Renew Energy 123:694–705. https://doi.org/10.1016/J.RENENE.2018.02.092

    Article  Google Scholar 

  26. Li Y, Shi H, Han F et al (2019) Smart wind speed forecasting approach using various boosting algorithms, big multi-step forecasting strategy. Renew Energy 135:540–553. https://doi.org/10.1016/j.renene.2018.12.035

    Article  Google Scholar 

  27. Sagi O, Rokach L (2018) Ensemble learning: a survey. Wiley Interdiscipl Rev Data Min Knowl Discov. https://doi.org/10.1002/widm.1249

    Article  Google Scholar 

  28. González-Enrique J, Ruiz-Aguilar JJ, Moscoso-López JA et al (2019) A genetic algorithm and neural network stacking ensemble approach to improve NO2 level estimations. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer, pp 856–867

  29. Pławiak P, Abdar M, Rajendra Acharya U (2019) Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring. Appl Soft Comput J 84:105740. https://doi.org/10.1016/j.asoc.2019.105740

    Article  Google Scholar 

  30. Pławiak P, Acharya UR (2019) Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput Appl. https://doi.org/10.1007/s00521-018-03980-2

    Article  Google Scholar 

  31. Van Roode S, Ruiz-Aguilar JJ, González-Enrique J, Turias IJ (2019) An artificial neural network ensemble approach to generate air pollution maps. Environ Monit Assess 191:1–15. https://doi.org/10.1007/s10661-019-7901-6

    Article  Google Scholar 

  32. Ruiz-Aguilar JJ, Urda D, Moscoso-López JA et al (2019) A freight inspection volume forecasting approach using an aggregation/disaggregation procedure, machine learning and ensemble models. Neurocomputing 391:282–291. https://doi.org/10.1016/j.neucom.2019.06.109

    Article  Google Scholar 

  33. Pławiak P, Abdar M, Pławiak J et al (2020) DGHNL: a new deep genetic hierarchical network of learners for prediction of credit scoring. Inf Sci (NY) 516:401–418. https://doi.org/10.1016/j.ins.2019.12.045

    Article  MATH  Google Scholar 

  34. Bandt C, Pompe B (2002) Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 88:174102. https://doi.org/10.1103/PhysRevLett.88.174102

    Article  Google Scholar 

  35. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang NE, Shen Z, Long SR et al (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A Math Phys Eng Sci 454:903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  MathSciNet  MATH  Google Scholar 

  37. Colominas MA, Schlotthauer G, Torres ME (2014) Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Control 14:19–29. https://doi.org/10.1016/J.BSPC.2014.06.009

    Article  Google Scholar 

  38. Wu Z, Norden EH (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  39. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise. In: 2011 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 4144–4147

  40. Ruiz-Aguilar JJ, Turias IJ, Jiménez-Come MJ (2015) A novel three-step procedure to forecast the inspection volume. Transp Res Part C Emerg Technol 56:393–414. https://doi.org/10.1016/j.trc.2015.04.024

    Article  Google Scholar 

  41. de Leite NP, Araújo AM, Rosas PAC et al (2019) Entropy measures for early detection of bearing faults. Phys A Stat Mech its Appl 514(458):472. https://doi.org/10.1016/J.PHYSA.2018.09.052

    Article  Google Scholar 

  42. Amigó JM, Keller K (2013) Permutation entropy: one concept, two approaches. Eur Phys J Spec Top 222:263–273. https://doi.org/10.1140/epjst/e2013-01840-1

    Article  Google Scholar 

  43. Yu L, Wang Z, Tang L (2015) A decomposition-ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. Appl Energy 156:251–267. https://doi.org/10.1016/J.APENERGY.2015.07.025

    Article  Google Scholar 

  44. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: McClelland DER (ed) Parallel distributed processing. MIT Press, Cambridge, pp 318–362

  45. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2:359–366

    Article  Google Scholar 

  46. Krogh A, Hertz JA (1992) A simple weight decay can improve generalization. In: Lippman DS, Moody JE, Touretzky DS (eds.) Advances in neural information processing systems, vol 4. Morgan Kaufmann, pp 950–957

  47. Burden F, Winkler D (2008) Bayesian regularization of neural networks. Humana Press, Totowa, pp 23–42

    Google Scholar 

  48. Prechelt L (1998) Automatic early stopping using cross validation: quantifying the criteria. Neural Netw 11:761–767. https://doi.org/10.1016/S0893-6080(98)00010-0

    Article  Google Scholar 

  49. Liang Y, Kelemen A (2008) Statistical advances and challenges for analyzing correlated high dimensional SNP data in genomic study for complex diseases. Stat Surv 2:43–60. https://doi.org/10.1214/07-SS026

    Article  MathSciNet  MATH  Google Scholar 

  50. Keller K, Unakafov A, Unakafova V et al (2014) Ordinal patterns, entropy, and EEG. Entropy 16:6212–6239. https://doi.org/10.3390/e16126212

    Article  Google Scholar 

  51. Riedl M, Müller A, Wessel N (2013) Practical considerations of permutation entropy. Eur Phys J Spec Top 222:249–262. https://doi.org/10.1140/epjst/e2013-01862-7

    Article  Google Scholar 

  52. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701

    Article  Google Scholar 

  53. Diebold FX, Mariano RS (1995) Comparing predictive accuracy. J Bus Econ Stat 13:134–144

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is part of the coordinated research projects TIN 2014-58516-C2-1-R and TIN2014-58516-C2-2-R supported by MICIN (Ministerio de Economía y Competitividad-Spain). Also, this work has been performed with the support of the Environmental Agency of the Andalusian Government, which provided the authors with all the monitoring data.

Funding

This study was funded by Ministerio de Economía y Competitividad-Spain (Grant Nos. TIN2014-58516-C2-1-R and TIN2014-58516-C2-2-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Ruiz-Aguilar.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Aguilar, J.J., Turias, I., González-Enrique, J. et al. A permutation entropy-based EMD–ANN forecasting ensemble approach for wind speed prediction. Neural Comput & Applic 33, 2369–2391 (2021). https://doi.org/10.1007/s00521-020-05141-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05141-w

Keywords

Navigation