Skip to main content

Advertisement

Log in

Hybrid multi-objective opposite-learning evolutionary algorithm for integrated production and maintenance scheduling with energy consideration

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

While conventional scheduling researches take production efficiency, cost and quality as objectives, increasingly serious ecological problems and energy shortage have turned scholars’ attention to energy-efficient scheduling. Meanwhile, maintenance activities are of great importance to equipment availability and production continuity. This paper addresses an energy-efficient multi-objective scheduling problem of a serial production line (SPSP) integrating production and maintenance, with the criteria of minimizing the makespan and the total energy consumption simultaneously. The impact of integrating preventive maintenance (PM) is analyzed, and the better interval mode is picked out. An energy-saving strategy combining shutdown windows of PM and energy-saving windows on idle machines is designed to cut down the total energy consumption. In order to tackle this NP-hard problem, a hybrid multi-objective opposite-based learning evolutionary algorithm (HMOLEA) is developed, in which the opposite-based learning and IGD indicator-based evolutionary mechanism are combined together and a special rank assignment is designed to improve the computational efficiency. Furthermore, a self-adaptive weighted mutation operator is fused into the framework of HMOLEA to enhance the exploration of the algorithm. Extensive computational experiments are carried out to verify the effectiveness and superiority of HMOLEA in solving the SPSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu CH (2014) Approximate trade-off between minimization of total weighted tardiness and minimization of carbon dioxide (CO2) emissions in bi-criteria batch scheduling problem. Int J Comput Integr Manuf 27(8):759–771. https://doi.org/10.1080/0951192X.2013.834479

    Article  Google Scholar 

  2. Zhou BH, Yi Q, Liu YW (2020) Proactive preventive maintenance policy for buffered serial production systems based on energy saving opportunistic windows. J Cleaner Prod 253:119791. https://doi.org/10.1016/j.jclepro.2019.119791

    Article  Google Scholar 

  3. Mohammad JR, Raheb B (2018) Haulage system selection for open pit mines using fuzzy MCDM and the view on energy saving. Neural Comput Appl 29:187–199. https://doi.org/10.1007/s00521-016-2562-7

    Article  Google Scholar 

  4. Lv JX, Peng T, Tang RZ (2019) Energy modeling and a method for reducing energy loss due to cutting load during machining operations. Proc Institution Mech Eng Part B J Eng Manuf 233(3):699–710. https://doi.org/10.1177/0954405418769922

    Article  Google Scholar 

  5. Li SJ, Liu F, Zhou XN (2018) Multi-objective energy-saving scheduling for a permutation flow line. Proc Institution Mech Eng Part B J Eng Manuf 232(5):879–888. https://doi.org/10.1177/0954405416657583

    Article  Google Scholar 

  6. Mouzon G, Yildirim MB, Twomey J (2007) Operational methods for minimization of energy consumption of manufacturing equipment. Int J Prod Res 45(18–19):4247–4271. https://doi.org/10.1080/00207540701450013

    Article  MATH  Google Scholar 

  7. Zhou BH, Shen CY (2018) Multi-objective optimization of material delivery for mixed model assembly lines with energy consideration. J Clean Prod 192:293–305. https://doi.org/10.1016/j.jclepro.2018.04.251

    Article  Google Scholar 

  8. Abd EI-Satter S, Kamel S, EI Sehiemy RA, et al (2019) Single-and multi-objective optimal power flow frameworks using Jaya optimization technique. Neural Comput Appl 31:8787–8806. https://doi.org/10.1007/s00521-019-04194-w

    Article  Google Scholar 

  9. Wang SJ, Liu M (2014) Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method. Int J Prod Res 52(5):1495–1508. https://doi.org/10.1080/00207543.2013.847983

    Article  Google Scholar 

  10. Wang L, Zhou G, Xu Y et al (2011) Advances in the study on hybrid flow shop scheduling. Control Instr Chem Industry 38(1):1–8

    Google Scholar 

  11. Wang L, Zhou G, Xu Y et al (2012) An artificial bee colony algorithm for solving hybrid flow-shop scheduling problem with unrelated parallel machines. Control Theory Appl 29(12):1551–1557

    MATH  Google Scholar 

  12. Gupta JND (1988) Two-stage, hybrid flowshop scheduling problem. J Oper Res Soc 39(4):359–364. https://doi.org/10.1057/jors.1988.63

    Article  MATH  Google Scholar 

  13. Che A, Wu XQ, Peng J et al (2017) Energy-efficient bi-objective single-machine scheduling with power-down mechanism. Comput Oper Res 85:172–183. https://doi.org/10.1016/j.cor.2017.04.004

    Article  MathSciNet  MATH  Google Scholar 

  14. May G, Stahl B, Taisch M et al (2015) Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int J Prod Res 53(23):7071–7089. https://doi.org/10.1080/00207543.2015.1005248

    Article  Google Scholar 

  15. Lei DM, Zheng YL, Guo XP (2017) A shuffled frog-leaping algorithm for flexible job shop scheduling with the consideration of energy consumption. Int J Prod Res 55(11):3126–3140. https://doi.org/10.1080/00207543.2016.1262082

    Article  Google Scholar 

  16. Fang K, Uhan N, Zhao F et al (2011) A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. J Manuf Syst 30(4):234–240. https://doi.org/10.1016/j.jmsy.2011.08.004

    Article  Google Scholar 

  17. Fang K, Uhan NA, Zhao F et al (2013) Flow shop scheduling with peak power consumption constraints. Ann Oper Res 206(1):115–145. https://doi.org/10.1007/s10479-012-1294-z

    Article  MathSciNet  MATH  Google Scholar 

  18. Li JQ, Sang HY, Han YY et al (2018) Efficient multi-objective optimization algorithm for hybrid flow shop scheduling problems with setup energy consumptions. J Clean Prod 181:584–598. https://doi.org/10.1016/j.jclepro.2018.02.004

    Article  Google Scholar 

  19. Jin YL, Jiang ZH, Hou WR (2008) Multi-objective integrated optimization research on preventive maintenance planning and production scheduling for a single machine. Int J Adv Manuf Technol 39(9–10):954–964. https://doi.org/10.1007/s00170-007-1268-5

    Article  Google Scholar 

  20. Cassady CR, Kutanoglu E (2005) Integrating preventive maintenance planning and production scheduling for a single machine. IEEE Trans Reliab 54(2):304–309. https://doi.org/10.1109/TR.2005.845967

    Article  Google Scholar 

  21. Ben Ali M, Sassi M, Gossa M et al (2011) Simultaneous scheduling of production and maintenance tasks in the job shop. Int J Prod Res 49(13):3891–3918. https://doi.org/10.1080/00207543.2010.492405

    Article  Google Scholar 

  22. Rahmati SHA, Ahmadi A, Karimi B (2018) Multi-objective evolutionary simulation based optimization mechanism for a novel stochastic reliability centered maintenance problem. Swarm Evolutionary Comput 40:255–271. https://doi.org/10.1016/j.swevo.2018.02.010

    Article  Google Scholar 

  23. Wang SJ, Liu M (2015) Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning. J Manuf Syst 37:182–192. https://doi.org/10.1016/j.jmsy.2015.07.002

    Article  Google Scholar 

  24. Feng HX, Xi LF, Xiao L et al (2018) Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling. Reliab Eng Syst Safety 176:218–229. https://doi.org/10.1016/j.ress.2018.04.004

    Article  Google Scholar 

  25. Fei YY, Ma HM (2018) Multi-objective joint optimization of batch-discrete hybrid flow shop scheduling integrated with machine maintenance[C]. In: 2018 5th International conference on industrial engineering and applications (ICIEA). IEEE, pp 247–253. https://doi.org/10.1109/IEA.2018.8387105

  26. Sulaiman MH, Mustaffa Z, Saari MM et al (2020) Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng Appl Artif Intell 87:10330. https://doi.org/10.1016/j.engappai.2019.103330

    Article  Google Scholar 

  27. Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001

    Article  Google Scholar 

  28. Muthiah-Nakarajan V, Noel MM (2016) Galactic swarm optimization: a new global optimization metaheuristic inspired by galactic motion. Appl Soft Comput 38:771–787. https://doi.org/10.1016/j.asoc.2015.10.034

    Article  Google Scholar 

  29. Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer: pathfinder algorithm. Appl Soft Comput J 78:545–568. https://doi.org/10.1016/j.asoc.2019.03.012

    Article  Google Scholar 

  30. Hochsteiner De Vasconcelos Segundo E, Mariani VC, Dos Santos Coelho L (2019) Metaheuristic inspired on owls behavior applied to heat exchangers design. Thermal Sci Eng Progress 14:100431. https://doi.org/10.1016/j.tsep.2019.100431

    Article  Google Scholar 

  31. Lee GC, Kim YD (2004) A branch-and-bound algorithm for a two-stage hybrid flowshop scheduling problem minimizing total tardiness. Int J Prod Res 42(22):4731–4743. https://doi.org/10.1080/0020754041233127044

    Article  MATH  Google Scholar 

  32. Kashan AH, Keshmiry M, Dahooie JH et al (2018) A simple yet effective grouping evolutionary strategy(GES) algorithm for scheduling parallel machines. Neural Comput Appl 30:1925–1938. https://doi.org/10.1007/s00521-016-2789-3

    Article  Google Scholar 

  33. Narasimhan SL, Panwalkar SS (1984) Scheduling in a two-stage manufacturing process. Int J Prod Res 22(4):555–564. https://doi.org/10.1080/00207548408942479

    Article  Google Scholar 

  34. Azadeh A, Goodarzi AH, Kolaee MH et al (2019) An efficient simulation–neural network–genetic algorithm for flexible flow shops with sequence-dependent setup times, job deterioration and learning effects. Neural Comput Appl 31:5327–5341

    Article  Google Scholar 

  35. Low C (2005) Simulated annealing heuristic for flow shop scheduling problems with unrelated parallel machines. Comput Oper Res 32(8):2013–2025. https://doi.org/10.1016/j.cor.2004.01.003

    Article  MATH  Google Scholar 

  36. Zhou BH, Hu LM, Zhong ZY (2018) A hybrid differential evolution algorithm with estimation of distribution algorithm for reentrant hybrid flow shop scheduling problem. Neural Comput Appl 30:193–209. https://doi.org/10.1007/s00521-016-2692-y

    Article  Google Scholar 

  37. Tseng CT, Liao CJ (2008) A particle swarm optimization algorithm for hybrid flow-shop scheduling with multiprocessor tasks. Int J Prod Res 46(17):4655–4670. https://doi.org/10.1080/00207540701294627

    Article  MATH  Google Scholar 

  38. Peng T, Zhou BH (2019) Hybrid bi-objective gray wolf optimization algorithm for a truck scheduling problem in the automotive industry. Appl Soft Comput 81:105513. https://doi.org/10.1016/j.asoc.2019.105513

    Article  Google Scholar 

  39. Peng T, Zhou BH (2018) Scheduling multiple servers to facilitate just-in-time part-supply in automobile assembly lines. Assem Autom 38(3):347–360. https://doi.org/10.1108/AA-08-2017-102

    Article  Google Scholar 

  40. Ruiz R, Vázquez-Rodríguez JA (2010) The hybrid flow shop scheduling problem. Eur J Oper Res 205(1):1–18. https://doi.org/10.1016/j.ejor.2009.09.024

    Article  MathSciNet  MATH  Google Scholar 

  41. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC’06). IEEE vol 1 pp 695–701

  42. Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6(2):154–160. https://doi.org/10.1287/ijoc.6.2.154

    Article  MATH  Google Scholar 

  43. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  44. Ishibuchi H, Masuda H, Tanigaki Y, et al. (2015) Modified distance calculation in generational distance and inverted generational distance. In: International conference on evolutionary multi-criterion optimization. Springer, Cham, pp 110–125. https://doi.org/10.1007/978-3-319-15892-1_8

  45. Abdullah S, Abdolrazzagh-Nezhad M (2014) Fuzzy job-shop scheduling problems: a review. Inf Sci 278:380–407. https://doi.org/10.1016/j.ins.2014.03.060

    Article  MathSciNet  MATH  Google Scholar 

  46. Kim MG, Yu JM, Lee DH (2015) Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines. Int J Prod Res 53(6):1819–1831. https://doi.org/10.1080/00207543.2014.962112

    Article  Google Scholar 

  47. Hong YY, Beltran AA Jr, Paglinawan AC (2018) A robust design of maximum power point tracking using Taguchi method for stand-alone PV system. Appl Energy 211:50–63. https://doi.org/10.1016/j.apenergy.2017.11.041

    Article  Google Scholar 

  48. Khalilpourazari S, Pasandideh SHR, Niaki STA (2019) Optimizing a multi-item economic order quantity problem with imperfect items, inspection errors, and backorders. Soft Comput 23(22):11671–11698. https://doi.org/10.1007/s00500-018-03718-1

    Article  Google Scholar 

  49. Zhou BH, Liao XM (2020) Particle filter and Levy flight-based decomposed multi-objective evolution hybridized particle swarm for flexible job shop greening scheduling with crane transportation. Appl Soft Comput J 91:106217. https://doi.org/10.1016/j.asoc.2020.106217

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported partially by the National Natural Science Foundation of China under Grant No. 71471135.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binghai Zhou.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Li, X. & Liu, W. Hybrid multi-objective opposite-learning evolutionary algorithm for integrated production and maintenance scheduling with energy consideration. Neural Comput & Applic 33, 1587–1605 (2021). https://doi.org/10.1007/s00521-020-05075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-05075-3

Keywords

Navigation