Skip to main content
Log in

Extreme learning machine-based super-twisting repetitive control for aperiodic disturbance, parameter uncertainty, friction, and backlash compensations of a brushless DC servo motor

  • S.I. : Extreme Learning Machine and Deep Learning Networks
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents an extreme learning machine-based super-twisting repetitive control (ELMSTRC) to improve the tracking accuracy of periodic signal with less chattering. The proposed algorithm is robust against the plant uncertainties caused by mass and viscous friction variations. Moreover, it compensates the nonlinear friction and the backlash by using extreme learning machine based super-twisting algorithm. Firstly, a repetitive control is designed to track the periodic reference and compensate the viscous friction. Then, a stable extreme learning machine-based super-twisting control is constructed to compensate the aperiodic disturbance, nonlinear friction, backlash and plant uncertainties. The stability of ELMSTRC system is analysed based on Lyapunov stability criteria. The proposed algorithm is verified on a brushless DC servo motor with various loading, backlash and friction conditions. The simulation and experimental comparisons highlight the advantages of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Inoue T, Nakano M, Iwai S (1981) High accuracy control of a proton synchrotron magnet power supply. In: Proceedings of 8th world congress IFAC, Kyoto, August 1981, pp 3137–3142

  2. Francis BA, Wonham WM (1975) The internal model principle for linear multivariable regulators. Appl Math Optim 2(2):170–194

    Article  MathSciNet  Google Scholar 

  3. Hara S, Yamamoto Y, Omata T, Nakano M (1988) Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Trans Autom Control 33(7):659–666

    Article  MathSciNet  Google Scholar 

  4. Chen S, Lai YM, Tan SC, Tse CK (2009) Fast response low harmonic distortion control scheme for voltage source inverters. IET Power Electron 2(5):574–584. https://doi.org/10.1049/iet-pel.2008.0149

    Article  Google Scholar 

  5. Kurniawan E, Cao Z, Man Z (2014) Design of robust repetitive control with time-varying sampling periods. IEEE Trans Industr Electron 61(6):2834–2841. https://doi.org/10.1109/TIE.2013.2276033

    Article  Google Scholar 

  6. Sayem AHM, Cao Z, Man Z (2017) Model free ESO-based repetitive control for rejecting periodic and aperiodic disturbances. IEEE Trans Industr Electron 64(4):3433–3441. https://doi.org/10.1109/TIE.2016.2606086

    Article  Google Scholar 

  7. Chuei R, Cao Z, Man Z (2017) Super twisting observer based repetitive control for aperiodic disturbance rejection in a brushless DC servo motor. Int J Control Autom Syst. https://doi.org/10.1007/s12555-016-0415-x

    Article  Google Scholar 

  8. Hamza MF, Yap HJ, Choudhury IA, Chiroma H, Kumbasar T (2018) A survey on advancement of hybrid type 2 fuzzy sliding mode control. Neural Comput Appl 30(2):331–353. https://doi.org/10.1007/s00521-017-3144-z

    Article  Google Scholar 

  9. Yuan X, Yang Y, Wang H, Wang Y (2013) Genetic algorithm-based adaptive fuzzy sliding mode controller for electronic throttle valve. Neural Comput Appl 23(1):209–217. https://doi.org/10.1007/s00521-012-1327-1

    Article  Google Scholar 

  10. Hsu C-F, Kao W-F (2018) Perturbation wavelet neural sliding mode position control for a voice coil motor driver. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3413-5

    Article  Google Scholar 

  11. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263. https://doi.org/10.1080/00207179308923053

    Article  MathSciNet  MATH  Google Scholar 

  12. Chuei R, Cao Z, Man Z (2016) Design of super twisting repetitive control. In: 2016 IEEE 11th conference on industrial electronics and applications (ICIEA), 5–7 June 2016, pp 758–762. https://doi.org/10.1109/iciea.2016.7603683

  13. Nordin M, Gutman PO (2002) Controlling mechanical systems with backlash—a survey. Automatica 38(10):1633–1649. https://doi.org/10.1016/S0005-1098(02)00047-X

    Article  MathSciNet  MATH  Google Scholar 

  14. Coulomb damping. https://en.wikipedia.org/wiki/Coulomb_damping. Accessed 14 Sept 2017

  15. Acho L, Iurian C, Ikhouane F, Rodellar J (2007) Robust-adaptive control of mechanical systems with friction: application to an industrial emulator. In: Proceedings of 2007 American control conference, 9–13 July 2007, pp 5970–5974. https://doi.org/10.1109/acc.2007.4282379

  16. Cai M, Xiang Z (2018) Adaptive finite-time control of a class of non-triangular nonlinear systems with input saturation. Neural Comput Appl 29(7):565–576. https://doi.org/10.1007/s00521-016-2540-0

    Article  Google Scholar 

  17. Li Y, Tong S, Li T (2013) Adaptive fuzzy output feedback control of nonlinear uncertain systems with unknown backlash-like hysteresis based on modular design. Neural Comput Appl 23(1):261–270. https://doi.org/10.1007/s00521-013-1355-5

    Article  Google Scholar 

  18. Çetin M, Bahtiyar B, Beyhan S (2019) Adaptive uncertainty compensation-based nonlinear model predictive control with real-time applications. Neural Comput Appl 31(2):1029–1043. https://doi.org/10.1007/s00521-017-3068-7

    Article  Google Scholar 

  19. Liu J (2013) Radial basis function (RBF) neural network control for mechanical systems: design, analysis and matlab simulation. Springer, Berlin

    Book  Google Scholar 

  20. Wang H, Xu Z, Do MT, Zheng J, Cao Z, Xie L (2015) Neural-network-based robust control for steer-by-wire systems with uncertain dynamics. Neural Comput Appl 26(7):1575–1586. https://doi.org/10.1007/s00521-014-1819-2

    Article  Google Scholar 

  21. Eski İ, Yıldırım Ş (2017) Neural network-based fuzzy inference system for speed control of heavy duty vehicles with electronic throttle control system. Neural Comput Appl 28(1):907–916. https://doi.org/10.1007/s00521-016-2362-0

    Article  Google Scholar 

  22. Yan H, Li Y (2017) Adaptive NN prescribed performance control for nonlinear systems with output dead zone. Neural Comput Appl 28(1):145–153. https://doi.org/10.1007/s00521-015-2043-4

    Article  MathSciNet  Google Scholar 

  23. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297. https://doi.org/10.1007/bf00994018

    Article  MATH  Google Scholar 

  24. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  25. Rong H-J, Zhao G-S (2013) Direct adaptive neural control of nonlinear systems with extreme learning machine. Neural Comput Appl 22(3):577–586. https://doi.org/10.1007/s00521-011-0805-1

    Article  Google Scholar 

  26. Yang Y, Wang Y, Yuan X, Chen Y, Tan L (2013) Neural network-based self-learning control for power transmission line deicing robot. Neural Comput Appl 22(5):969–986. https://doi.org/10.1007/s00521-011-0789-x

    Article  Google Scholar 

  27. Yang C, Huang K, Cheng H, Li Y, Su C (2017) Haptic Identification by ELM-controlled uncertain manipulator. IEEE Trans Syst Man Cybern: Syst 47(8):2398–2409. https://doi.org/10.1109/TSMC.2017.2676022

    Article  Google Scholar 

  28. Hu Y et al (2019) Extreme-learning-machine-based FNTSM control strategy for electronic throttle. Neural Comput Appl. https://doi.org/10.1007/s00521-019-04446-9

    Article  Google Scholar 

  29. Doh TY, Ryoo JR, Chung MJ (2006) Design of a repetitive controller: an application to the track-following servo system of optical disk drives. IEE Proc Control Theory Appl 153(3):323–330

    Article  MathSciNet  Google Scholar 

  30. Liu J, Wang X (2011) Advanced sliding mode control for mechanical systems. Springer, Berlin

    Book  Google Scholar 

  31. Levant A (1998) Robust exact differentiation via sliding mode technique. Automatica 34(3):379–384

    Article  MathSciNet  Google Scholar 

  32. Manual For Model 220 Industrial Emulator/Servo Trainer (1995), 2.3 edn. Educational Control Products, Bell Canyon, CA

  33. Meng X, Rozycki P, Qiao J, Wilamowski BM (2018) Nonlinear system modeling using RBF networks for industrial application. IEEE Trans Ind Inf 14(3):931–940. https://doi.org/10.1109/TII.2017.2734686

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Chuei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuei, R., Cao, Z. Extreme learning machine-based super-twisting repetitive control for aperiodic disturbance, parameter uncertainty, friction, and backlash compensations of a brushless DC servo motor. Neural Comput & Applic 32, 14483–14495 (2020). https://doi.org/10.1007/s00521-020-04965-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-020-04965-w

Keywords

Navigation