A hybrid classifier combination for home automation using EEG signals

Abstract

Over the years, the usage of artificial intelligence (AI) algorithms is increased to develop various smart applications using Internet-of-Things. Home automation is a fast emerging area that involves monitoring and controlling of household appliances for user comfort and efficient management. Using mental commands to control different electrical appliances and objects in house is a very interesting application. Brain–Computer Interface is used to relay the information from the subject’s brain to an Electronic device, and such devices can be used for this purpose. The information from the subject’s brain is collected in form of Electroencephalogram (EEG) signals. In this paper, we analyze the use of EEG signals for applications related to home automation. We present a hybrid model which makes use of Long Short-Term Memory which is considered as a robust temporal classification model in AI and classical Random Forest Classifier for EEG classification. We also discuss how our proposed hybrid model overcomes the limitation presented by the individual models. To arrive at the best model, we have analyzed various parameters such as sampling rate and combination of different brain rhythms which we finally use in our hybrid model. Based on experiments conducted on a custom-built dataset, we also discuss the spatial significance of different electrodes of the EEG device and get insight in signals generated from different areas of the brain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Konstantinidis E, Conci N, Bamparopoulos G, Sidiropoulos E, De Natale F, Bamidis P (2015) Introducing neuroberry, a platform for pervasive EEG signaling in the IoT domain. In: Proceedings of the 5th EAI international conference on wireless mobile communication and healthcare, pp 166–169. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)

  2. 2.

    Ghodake AA, Shelke S (2016) Brain controlled home automation system. In: 2016 10th international conference on intelligent systems and control (ISCO). IEEE, pp 1–4

  3. 3.

    Shivappa VKK, Luu B, Solis M, George K (2018) Home automation system using brain computer interface paradigm based on auditory selection attention. In: 2018 IEEE international instrumentation and measurement technology conference (I2MTC). IEEE, pp 1–6

  4. 4.

    Holzner C, Guger C, Edlinger G, Gronegress C, Slater M (2009) Virtual smart home controlled by thoughts. In: 2009 18th IEEE international workshops on enabling technologies: infrastructures for collaborative enterprises. IEEE, pp 236–239

  5. 5.

    Lee WT, Nisar H, Malik AS, Yeap KH (2013) A brain computer interface for smart home control. In: 2013 IEEE international symposium on consumer electronics (ISCE). IEEE, pp 35–36

  6. 6.

    Berns GS, Moore SE (2012) A neural predictor of cultural popularity. J Consum Psychol 22(1):154–160

    Article  Google Scholar 

  7. 7.

    Stanton SJ, Sinnott-Armstrong W, Huettel SA (2016) Neuromarketing: ethical implications of its use and potential misuse. J Bus Ethics 144(4):1–13

    Google Scholar 

  8. 8.

    Telpaz A, Webb R, Levy DJ (2015) Using EEG to predict consumers’ future choices. J Market Res 52(4):511–529

    Article  Google Scholar 

  9. 9.

    Guger C, Schlogl A, Neuper C, Walterspacher D, Strein T, Pfurtscheller G (2001) Rapid prototyping of an EEG-based brain–computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 9(1):49–58

    Article  Google Scholar 

  10. 10.

    Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G (2009) Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain–computer interface. Clin Neurophysiol 120(2):239–247

    Article  Google Scholar 

  11. 11.

    Kim B, Kim L, Kim YH, Yoo SK (2017) Cross-association analysis of EEG and emg signals according to movement intention state. Cogn Syst Res 44:1–9

    Article  Google Scholar 

  12. 12.

    Yeh SC, Hou CL, Peng WH, Wei ZZ, Huang S, Kung EYC, Lin L, Liu YH (2018) A multiplayer online car racing virtual-reality game based on internet of brains. J Syst Arch 89:30–40

    Article  Google Scholar 

  13. 13.

    Losonczi L, Márton LF, Brassai TS, Farkas L (2014) Embedded EEG signal acquisition systems. Procedia Technol 12:141–147

    Article  Google Scholar 

  14. 14.

    Bueno L, Pons JL, Bastos Filho TF (2013) An embedded system for an EEG based BCI. In: Biosignals and biorobotics conference (BRC), 2013 ISSNIP. IEEE, pp 1–5

  15. 15.

    Pinho F, Cerqueira J, Correia J, Sousa N, Dias N (2017) Mybrain: a novel EEG embedded system for epilepsy monitoring. J Med Eng Technol 41(7):564–585

    Article  Google Scholar 

  16. 16.

    Kawala-Janik A, Pelc M, Podpora M (2015) Method for EEG signals pattern recognition in embedded systems. Elektron Elektrotech 21(3):3–9

    Article  Google Scholar 

  17. 17.

    Zhang Y, Zhou G, Jin J, Zhao Q, Wang X, Cichocki A (2016) Sparse bayesian classification of EEG for brain–computer interface. IEEE Trans Neural Netw Learn Syst 27(11):2256–2267

    MathSciNet  Article  Google Scholar 

  18. 18.

    Zhang Y, Wang Y, Jin J, Wang X (2017) Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int J Neural Syst 27(02):1650,032

    Article  Google Scholar 

  19. 19.

    Gupta A, Sahu H, Nanecha N, Kumar P, Roy PP, Chang V (2019) Enhancing text using emotion detected from EEG signals. J Grid Comput 17(2):325–340

    Article  Google Scholar 

  20. 20.

    Das BB, Kumar P, Kar D, Ram SK, Babu KS, Mohapatra RK (2019) A spatio-temporal model for EEG-based person identification. Multimed Tools Appl 78(19):28157–28177

    Article  Google Scholar 

  21. 21.

    Gauba H, Kumar P, Roy PP, Singh P, Dogra DP, Raman B (2017) Prediction of advertisement preference by fusing EEG response and sentiment analysis. Neural Netw 92:77–88

    Article  Google Scholar 

  22. 22.

    Yadava M, Kumar P, Saini R, Roy PP, Dogra DP (2017) Analysis of EEG signals and its application to neuromarketing. Multimed Tools Appl 76(18):1–25

    Article  Google Scholar 

  23. 23.

    Kaur B, Singh D, Roy PP (2016) A novel framework of EEG-based user identification by analyzing music-listening behavior. Multimed Tools Appl 76(24):1–22

    Google Scholar 

  24. 24.

    AlShu’eili H, Gupta GS, Mukhopadhyay S (2011) Voice recognition based wireless home automation system. In: 2011 4th international conference on mechatronics (ICOM), pp 1–6. https://doi.org/10.1109/ICOM.2011.5937116

  25. 25.

    Costa EJ, Cabral EF (2000) Eeg-based discrimination between imagination of left and right hand movements using adaptive gaussian representation. Med Eng Phys 22(5):345–348

    Article  Google Scholar 

  26. 26.

    Hashimoto Y, Ushiba J (2013) EEG-based classification of imaginary left and right foot movements using beta rebound. Clin Neurophysiol 124(11):2153–2160

    Article  Google Scholar 

  27. 27.

    Khurana V, Kumar P, Saini R, Roy PP (2018) EEG based word familiarity using features and frequency bands combination. Cogn Syst Res 49:33–48

    Article  Google Scholar 

  28. 28.

    Zhou SM, Gan JQ, Sepulveda F (2008) Classifying mental tasks based on features of higher-order statistics from EEG signals in brain–computer interface. Inf Sci 178(6):1629–1640

    Article  Google Scholar 

  29. 29.

    Mahanta MS, Aghaei AS, Plataniotis KN, Pasupathy S (2010) Spatio-spectral sufficient statistic for mental imagery EEG signals. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–7. https://doi.org/10.1109/IJCNN.2010.5596467

  30. 30.

    Siuly, Li Y Wen P (2011) EEG signal classification based on simple random sampling technique with least square support vector machine. Int J Biomed Eng Technol 7(4):390–409

    Article  Google Scholar 

  31. 31.

    Li Y, Wen PP et al (2011) Clustering technique-based least square support vector machine for EEG signal classification. Comput Methods Programs Biomed 104(3):358–372

    Article  Google Scholar 

  32. 32.

    Siuly S, Kabir E, Wang H, Zhang Y (2015) Exploring sampling in the detection of multicategory EEG signals. Comput Math Methods Med. https://doi.org/10.1155/2015/576437

    Article  Google Scholar 

  33. 33.

    Bajaj V, Pachori RB (2012) Eeg signal classification using empirical mode decomposition and support vector machine. In: Proceedings of the international conference on soft computing for problem solving (SocProS 2011) December 20–22, 2011. Springer, pp 623–635

  34. 34.

    Aslan K, Bozdemir H, Şahin C, Oğulata SN, Erol R (2008) A radial basis function neural network model for classification of epilepsy using EEG signals. J Med Syst 32(5):403–408

    Article  Google Scholar 

  35. 35.

    Bashivan P, Rish I, Yeasin M, Codella N (2015) Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448

  36. 36.

    Le HTS, Kamaruzaman MHB, Shukri NBA, Asiri SAB (2015) Lab report signal processing electroencephalogram (EEG). Technical Report KED 130002, University of Malaya. http://www.academia.edu/11959194/EEG_Signal_Processing. Accessed July 2018

  37. 37.

    Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with lstm. Neural Comput 12(10):2451–2471

    Article  Google Scholar 

  38. 38.

    Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  39. 39.

    Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  40. 40.

    Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Article  Google Scholar 

  41. 41.

    Alotaiby T, El-Samie FEA, Alshebeili SA, Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 2015(1):66

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Mr. Tauqueer Ahmad, Mr. Shubham Kumar Pandey and Mr. Prakhar Pandey for their help in designing the protocol of the experiments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Roy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, P.P., Kumar, P. & Chang, V. A hybrid classifier combination for home automation using EEG signals. Neural Comput & Applic 32, 16135–16147 (2020). https://doi.org/10.1007/s00521-020-04804-y

Download citation

Keywords

  • EEG
  • IoT
  • LSTMs
  • Hybrid machine learning