Skip to main content
Log in

A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer

Neural Computing and Applications Aims and scope Submit manuscript

Cite this article

Abstract

Metaheuristic algorithms have received much attention recently for solving different optimization and engineering problems. Most of these methods were inspired by nature or the behavior of certain swarms, such as birds, ants, bees, or even bats, while others were inspired by a specific social behavior such as colonies, or political ideologies. These algorithms faced an important issue, which is the balancing between the global search (exploration) and local search (exploitation) capabilities. In this research, a novel swarm-based metaheuristic algorithm which depends on the behavior of nomadic people was developed, it is called “Nomadic People Optimizer (NPO)”. The proposed algorithm simulates the nature of these people in their movement and searches for sources of life (such as water or grass for grazing), and how they have lived hundreds of years, continuously migrating to the most comfortable and suitable places to live. The algorithm was primarily designed based on the multi-swarm approach, consisting of several clans and each clan looking for the best place, in other words, for the best solution depending on the position of their leader. The algorithm is validated based on 36 unconstrained benchmark functions. For the comparison purpose, six well-established nature-inspired algorithms are performed for evaluating the robustness of NPO algorithm. The proposed and the benchmark algorithms are tested for large-scale optimization problems which are associated with high-dimensional variability. The attained results demonstrated a remarkable solution for the NPO algorithm. In addition, the achieved results evidenced the potential high convergence, lower iterations, and less time-consuming required for finding the current best solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Engelbrecht AP (2007) Computational intelligence. Wiley, New York

    Book  Google Scholar 

  2. Lynn N, Suganthan PN (2017) Ensemble particle swarm optimizer. Appl Soft Comput 55:533–548. https://doi.org/10.1016/j.asoc.2017.02.007

    Article  Google Scholar 

  3. Dorigo M, Stützle T (2019) Ant colony optimization: overview and recent advances. In: International series in operations research and management science

  4. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  5. Mousavirad SJ, Ebrahimpour-Komleh H (2017) Human mental search: a new population-based metaheuristic optimization algorithm. Appl Intell 47:850–887. https://doi.org/10.1007/s10489-017-0903-6

    Article  Google Scholar 

  6. Beyer HG, Finck S, Breuer T (2014) Evolution on trees: on the design of an evolution strategy for scenario-based multi-period portfolio optimization under transaction costs. Swarm Evol Comput 17:74–87. https://doi.org/10.1016/j.swevo.2014.03.002

    Article  Google Scholar 

  7. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  Google Scholar 

  8. Heidari AA, Pahlavani P (2017) An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl Soft Comput J 60:115–134. https://doi.org/10.1016/j.asoc.2017.06.044

    Article  Google Scholar 

  9. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from natural to artificial systems (No. 1). Oxford University Press

  10. Yaseen Z, Mohtar WHMW, Ameen AMS et al (2019) Implementation of univariate paradigm for streamflow simulation using hybrid data-driven model: case study in tropical region. IEEE Access 7:7447–74481

    Google Scholar 

  11. Maroufpoor S, Maroufpoor E, Bozorg-Haddad O et al (2019) Soil moisture simulation using hybrid artificial intelligent model: Hybridization of adaptive neuro fuzzy inference system with grey wolf optimizer algorithm. J Hydrol 575:544–556. https://doi.org/10.1016/j.jhydrol.2019.05.045

    Article  Google Scholar 

  12. Naganna S, Deka P, Ghorbani M et al (2019) Dew point temperature estimation: application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water. https://doi.org/10.3390/w11040742

    Article  Google Scholar 

  13. Yaseen Z, Ebtehaj I, Kim S et al (2019) Novel hybrid data-intelligence model for forecasting monthly rainfall with uncertainty analysis. Water 11:502. https://doi.org/10.3390/w11030502

    Article  Google Scholar 

  14. Yaseen ZM, Ehteram M, Hossain MS et al (2019) A novel hybrid evolutionary data-intelligence algorithm for irrigation and power production management: application to multi-purpose reservoir systems. Sustain. https://doi.org/10.3390/su11071953

    Article  Google Scholar 

  15. Yaseen ZM, Tran MT, Kim S et al (2018) Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach. Eng Struct 177:244–255. https://doi.org/10.1016/j.engstruct.2018.09.074

    Article  Google Scholar 

  16. Tao H, Diop L, Bodian A et al (2018) Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: regional case study in Burkina Faso. Agric Water Manag 208:140–151

    Article  Google Scholar 

  17. Yaseen Z, Ehteram M, Sharafati A et al (2018) The integration of nature-inspired algorithms with least square support vector regression models: application to modeling river dissolved oxygen concentration. Water 10:1124

    Article  Google Scholar 

  18. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98. https://doi.org/10.1016/j.advengsoft.2015.01.010

    Article  Google Scholar 

  19. Xiong N, Molina D, Ortiz ML, Herrera F (2015) A walk into metaheuristics for engineering optimization: principles, methods and recent trends. Int J Comput Intell Syst 8:606–636. https://doi.org/10.1080/18756891.2015.1046324

    Article  Google Scholar 

  20. Ghorbani MA, Deo RC, Karimi V et al (2017) Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stoch Environ Res Risk Assess 32:1683–1697

    Article  Google Scholar 

  21. Al Sudani ZA, Salih SQ, Yaseen ZM et al (2019) Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol 573:1–15

    Article  Google Scholar 

  22. Lalbakhsh A, Afzal MU, Esselle KP (2017) Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna. IEEE Antennas Wirel Propag Lett 16:912–915. https://doi.org/10.1109/LAWP.2016.2614498

    Article  Google Scholar 

  23. Roberge V, Tarbouchi M, Okou F (2014) Strategies to accelerate harmonic minimization in multilevel inverters using a parallel genetic algorithm on graphical processing unit. IEEE Trans Power Electron 29:5087–5090. https://doi.org/10.1109/TPEL.2014.2311737

    Article  Google Scholar 

  24. Gao W-F, Huang L-L, Liu S-Y, Dai C (2015) Artificial bee colony algorithm based on information learning. IEEE Trans Cybern 45:2827–2839

    Article  Google Scholar 

  25. Lalbakhsh A, Afzal MU, Esselle K (2016) Simulation-driven particle swarm optimization of spatial phase shifters. In: Proceedings of the 2016 18th international conference on electromagnetics in advanced applications, ICEAA 2016. pp 428–430

  26. Lalbakhsh P, Zaeri B, Lalbakhsh A (2013) An improved model of ant colony optimization using a novel pheromone update strategy. IEICE Trans Inf Syst 96:2309–2318. https://doi.org/10.1587/transinf.E96.D.2309

    Article  Google Scholar 

  27. Al-Musawi AA, Alwanas AAH, Salih SQ et al (2019) Shear strength of SFRCB without stirrups simulation: implementation of hybrid artificial intelligence model. Eng Comput. https://doi.org/10.1007/s00366-018-0681-8

    Article  Google Scholar 

  28. Yaseen ZM, Afan HA, Tran MT (2018) Beam-column joint shear prediction using hybridized deep learning neural network with genetic algorithm. In: IOP conference series: earth and environmental science

  29. Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol Comput 11:1–18. https://doi.org/10.1162/106365603321828970

    Article  Google Scholar 

  30. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  31. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102. https://doi.org/10.1109/4235.771163

    Article  Google Scholar 

  32. Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713. https://doi.org/10.1109/TEVC.2008.919004

    Article  Google Scholar 

  33. Lim CP, Jain LC (2009) Advances in swarm intelligence. Stud Comput Intell 248:1–7

    Google Scholar 

  34. Jadon SS, Bansal JC, Tiwari R, Sharma H (2015) Accelerating artificial bee colony algorithm with adaptive local search. Memet Comput 7:215–230. https://doi.org/10.1007/s12293-015-0158-x

    Article  Google Scholar 

  35. Espitia HE, Sofrony JI (2018) Statistical analysis for vortex particle swarm optimization. Appl Soft Comput J. https://doi.org/10.1016/j.asoc.2018.03.002

    Article  MATH  Google Scholar 

  36. Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1:33–57. https://doi.org/10.1007/s11721-007-0002-0

    Article  Google Scholar 

  37. Yang XS, Deb S (2009) Cuckoo search via lévy flights. In: 2009 world congress on nature and biologically inspired computing (NaBIC), pp 210–214

  38. Yang XS (2009) Firefly algorithms for multimodal optimization. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) 5792 LNCS:169–178. https://doi.org/10.1007/978-3-642-04944-6_14

  39. Yang XS (2010) Firefly algorithm, Levy flights and global optimization. Res Dev Intell Syst. https://doi.org/10.1007/978-1-84882-983-1

    Article  Google Scholar 

  40. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Tech Rep TR06, Erciyes Univ 10. https://doi.org/citeulike-article-id:6592152

  41. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  42. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  43. Yaseen ZM, Ebtehaj I, Bonakdari H et al (2017) Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. J Hydrol 554:263–276. https://doi.org/10.1016/j.jhydrol.2017.09.007

    Article  Google Scholar 

  44. Ghorbani MA, Deo RC, Yaseen ZM et al (2017) Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North Iran. Theor Appl Climatol 133:1119–1131

    Article  Google Scholar 

  45. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Des 43:303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  46. Kumar M, Kulkarni AJ, Satapathy SC (2017) Socio evolution & learning optimization algorithm: a socio-inspired optimization methodology. Future Gener Comput, Syst

    Google Scholar 

  47. Kuo HC, Lin CH (2013) Cultural evolution algorithm for global optimizations and its applications. J Appl Res Technol 11:510–522. https://doi.org/10.1016/S1665-6423(13)71558-X

    Article  Google Scholar 

  48. Buckham BJ, Lambert C (1999) Simulated annealing applications. Mech Eng 1–16

  49. Eskandar H, Sadollah A, Bahreininejad A, Hamdi M (2012) Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Comput Struct 110–111:151–166. https://doi.org/10.1016/j.compstruc.2012.07.010

    Article  Google Scholar 

  50. Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl Soft Comput J 13:2592–2612. https://doi.org/10.1016/j.asoc.2012.11.026

    Article  Google Scholar 

  51. Nematollahi AF, Rahiminejad A, Vahidi B (2017) A novel physical based meta-heuristic optimization method known as lightning attachment procedure optimization. Appl Soft Comput J 59:596–621. https://doi.org/10.1016/j.asoc.2017.06.033

    Article  Google Scholar 

  52. Huang G (2017) Artificial memory optimization. Appl Soft Comput J 61:497–526. https://doi.org/10.1016/j.asoc.2017.08.021

    Article  Google Scholar 

  53. Yang XS, Deb S, Zhao Y-X et al (2017) Swarm intelligence: past, present and future. Soft Comput 22:5923–5933

    Article  Google Scholar 

  54. Birattari M, Paquete L, St T, Varrentrapp K (2001) Classification of metaheuristics and design of experiments for the analysis of components. Tech. Rep. AIDA-01-05

  55. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):35. https://doi.org/10.1145/2480741.2480752

    Article  MATH  Google Scholar 

  56. Silberholz J, Golden B (2010) Comparison of metaheuristics. In: Handbook of metaheuristics, Springer, Boston, MA, pp 625–640

  57. Kashif H, Salleh N, Cheng S, Shi Y (2018) On the exploration and exploitation in popular swarm-based metaheuristic algorithms. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3592-0

    Article  Google Scholar 

  58. Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering design optimization. J Intell Manuf. https://doi.org/10.1007/s10845-010-0393-4

    Article  MATH  Google Scholar 

  59. Taha AM, Chen S-D, Mustapha A (2015) Bat algorithm based hybrid filter-wrapper approach. Adv Oper Res. https://doi.org/10.1155/2015/961494

    Article  MathSciNet  MATH  Google Scholar 

  60. Taha AM, Chen S-D, Mustapha A (2015) Natural extensions: bat algorithm with memory. J Theor Appl Inf Technol 79:1–9

    Google Scholar 

  61. Ahmed HA, Zolkipli MF, Ahmad M (2018) A novel efficient substitution-box design based on firefly algorithm and discrete chaotic map. Neural Comput Appl. https://doi.org/10.1007/s00521-018-3557-3

    Article  Google Scholar 

  62. Alzaidi AA, Ahmad M, Ahmed HS, Al Solami E (2018) Sine–cosine optimization-based bijective substitution-boxes construction using enhanced dynamics of chaotic map. Complexity. https://doi.org/10.1155/2018/9389065

    Article  Google Scholar 

  63. Clerc M (2011) Standard PSO 2011 (SPSO). In: Part. Swarm Cent. https://www.particleswarm.info/Programs.html

  64. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  65. Yang XS (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation. Springer, Berlin, pp 240–249

  66. Jamil M, Yang XS, Zepernick HJD (2013) Test functions for global optimization: a comprehensive survey. In: Swarm intelligence and bio-inspired computation, Elsevier, pp 193–222

  67. Qu BY, Liang JJ, Wang ZY et al (2016) Novel benchmark functions for continuous multimodal optimization with comparative results. Swarm Evol Comput 26:23–34. https://doi.org/10.1016/j.swevo.2015.07.003

    Article  Google Scholar 

  68. Andrei N (2008) An unconstrained optimization test functions collection. Adv Model Optim 10:147–161

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is funded by UMP PGRS170338: Analysis System based on Technological YouTube Channels Reviews, and UMP RDU180367 Grant: Enhance Kidney Algorithm for IOT Combinatorial Testing Problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Q. Salih.

Ethics declarations

Conflict of interest

There is no conflict of interest in publishing this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salih, S.Q., Alsewari, A.A. A new algorithm for normal and large-scale optimization problems: Nomadic People Optimizer. Neural Comput & Applic 32, 10359–10386 (2020). https://doi.org/10.1007/s00521-019-04575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-019-04575-1

Keywords

Navigation