Signature verification approach using fusion of hybrid texture features

Abstract

In this paper, a writer-dependent signature verification method is proposed. Two different types of texture features, namely discrete wavelet and local quantized patterns (LQP) features, are employed to extract two kinds of transform and statistical-based information from signature images. For each writer, two separate signature models, corresponding to each set of LQP and wavelet features, using one-class support vector machines (SVMs) are created to obtain two different authenticity scores for a given signature. Finally, a score-level classifier fusion based on the average method is performed to integrate the scores obtained from the two one-class SVMs and achieve the final verification score. To train the one-class SVMs in the proposed system, only genuine signatures are considered. The proposed signature verification method was tested using four different publicly available datasets to demonstrate the generality of the proposed method. The evaluation results indicate that the proposed system outperforms other existing systems in the literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Impedovo D, Pirlo G (2008) Automatic signature verification: the state of the art. IEEE Trans Syst Man Cybern Part C Appl Rev 38(5):609–635

    Article  Google Scholar 

  2. 2.

    Impedovo D, Pirlo G, Russo M (2014) Recent advances in offline signature identification. In: Proceedings of the 14th international conference on frontiers in handwriting recognition, pp 639–642

  3. 3.

    Hafemann LG, Sabourin R, Oliveira LS (2017) Offline handwritten signature verification—literature review. In: Proceedings of the 7th international conference on image processing theory, tools and applications (IPTA), pp 1–8

  4. 4.

    Leclerc F, Plamondon R (1994) Automatic signature verification: the state of the art-1989-1993. Intl J Pattern Recogn Artif Intell 8(3):643–660

    Article  Google Scholar 

  5. 5.

    Plamondon R, Srihari SN (2000) Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 22(1):63–84

    Article  Google Scholar 

  6. 6.

    Malik MI, Ahmed S, Marcelliy A, Pal U, Blumenstein M, Alewijnse L, Liwicki M (2015) ICDAR 2015 competitions on signature verification and writer identification for on- and off-line skilled forgeries (SigWiComp 2015). In: Proceedings of the ICDAR, pp 1186–1190

  7. 7.

    Pottier I, Burel G (1994) Identification and authentication of handwritten signatures with a connectionist approach. In: Proceedings of the IEEE conference on neural networks, pp 2948–2951

  8. 8.

    Nguyen V, Kawazoe Y, Wakabayashi T, Pal U, Blumenstein M (2010) Performance analysis of the gradient feature and the modified direction feature for off-line signature verification. In: International conference on frontiers in handwriting recognition, pp 303–307

  9. 9.

    Yılmaz MB, Yanıkoğlu B (2016) Score level fusion of classifiers in off-line signature verification. Inf Fusion 32:109–119

    Article  Google Scholar 

  10. 10.

    Vargas JF, Ferrer MA, Travieso CM, Alonso JB (2011) Off-line signature verification based on grey level information using texture features. Pattern Recogn 44(2):375–385

    Article  Google Scholar 

  11. 11.

    Wang Z, Ying Z (2012) Facial expression recognition based on local phase quantization and sparse representation. In: Proceedings of the eighth international conference on natural computation (ICNC), pp 222–225

  12. 12.

    Kalera M, Srihari S, Xu A (2004) Offline signature verification and identification using distance statistics. Int J Pattern Recognit Artif Intell 18(7):1339–1360

    Article  Google Scholar 

  13. 13.

    Malik MI, Liwicki M, Dengel A (2011) Evaluation of local and global features for offline signature verification. In: Proceedings of the international workshop on automated forensic handwriting analysis, pp 26–30

  14. 14.

    Kumar R, Sharma JD, Chanda B (2012) Writer-independent off-line signature verification using surroundedness feature. Pattern Recogn Lett 33:301–308

    Article  Google Scholar 

  15. 15.

    Ruiz-Del-Solar J, Devia C, Loncomilla P, Concha F (2008) Offline signature verification using local interest points and descriptors. In: Proceedings of the 13th Iberoamerican congress on pattern recognition: progress in pattern recognition, image analysis and applications, pp 22–29

    Google Scholar 

  16. 16.

    Malik MI, Liwicki M, Alewijnse L, Ohyama W, Blumenstein M, Found B (2013) ICDAR 2013 competitions on signature verification and writer identification for on- and offline skilled forgeries (SigWiComp 2013). In: Proceedings of the ICDAR, pp 1477–1483

  17. 17.

    Xu B, Lin D, Wang L, Chao H, Li W, Liao Q (2014) Performance comparison of local directional pattern to local binary pattern in off-line signature verification system. In: International congress on image and signal processing, pp 308–312

  18. 18.

    Pal S, Pal U, Blumenstein M (2013) A two-stage approach for English and Hindi off-line signature verification. In: Proceedings of the international workshop on emerging aspects in handwritten signature processing, pp 140–148

    Google Scholar 

  19. 19.

    Pal S, Alaei A, Pal U, Blumenstein M (2011) Off-line signature verification based on background and foreground information. In: Proceedings of the international conference on digital image computing: techniques and applications, pp 672–677

  20. 20.

    Pal S, Alaei A, Pal U, Blumenstein M (2012) multi-script off-line signature identification. In: Proceedings of the international conference on hybrid intelligent systems, pp 236–240

  21. 21.

    Pal S, Nguyen V, Blumenstein M, Pal U (2012) Off-line Bangla signature verification. In: Proceedings of the international workshop on document analysis systems, pp 282–286

  22. 22.

    Pal S, Alaei A, Pal U, Blumenstein M (2015) Interval-valued symbolic representation based method for off-line signature verification. In: Proceedings of the IJCNN

  23. 23.

    Hu J, Chen Y (2013) Offline signature verification using real Adaboost classifier combination of pseudo-dynamic features. In: Proceedings of the 12th ICDAR, pp 1345–1349

  24. 24.

    Shanker AP, Rajagopalan AN (2007) Off-line signature verification using DTW. Pattern Recogn Lett 28:1407–1414

    Article  Google Scholar 

  25. 25.

    Justino EJR, El Yacoubi A, Bortolozzi F, Sabourin R (2000) An off-line signature verification system using HMM and graphometric features. In: Proceedings of the Fourth DAS, pp 211–222

  26. 26.

    Ferrer MA, Vargas F, Travieso CM, Alonso JB (2010) Signature verification using local directional pattern (LDP). In: Proceedings of the IEEE international Carnahan conference on security technology (ICCST), pp 336–340

  27. 27.

    Wen J, Fang B, Tang Y, Zhang T (2009) Model-based signature verification with rotation invariant features. Pattern Recogn 42(7):1458–1466

    Article  Google Scholar 

  28. 28.

    Gilperez A, Alonso-Fernandez F, Pecharroman S, Fierrez J, Ortega-Garcia J (2008) Off-line signature verification using contour features. In: Proceedings of the ICFHR

  29. 29.

    Fierrez-Aguilar J, Alonso-Hermira N, Moreno-Marquez G, Ortega-Garcia J (2004) An off-line signature verification system based on fusion of local and global information. Workshop on biometric authentication. Springer LNCS-3087. Springer, Berlin, pp 298–306

    Google Scholar 

  30. 30.

    Eskander G, Sabourin R, Granger E (2013) Hybrid writer-independent-writer-dependent offline signature verification system. IET Biom 2(4):169–181

    Article  Google Scholar 

  31. 31.

    Batista L, Granger E, Sabourin R (2012) Dynamic selection of generative–discriminative ensembles for off-line signature verification. Pattern Recogn 45(4):1326–1340

    Article  Google Scholar 

  32. 32.

    Shekar BH, Bharathi RK, Kittler J, Vizilter Y, Mestestskiy L (2015) Grid structured morphological pattern spectrum for off-line signature verification. In: Proceedings of the international conference on biometrics (ICB), pp 430–435

  33. 33.

    Hamadene A, Chibani Y (2016) One-class writer-independent offline signature verification using feature dissimilarity thresholding. IEEE Trans Inf Forensics Secur 11(6):1226–1238

    Article  Google Scholar 

  34. 34.

    Ferrer MA, Vargas JF, Morales A, Ordonez A (2012) Robustness of offline signature verification based on gray level features. IEEE Trans Inf Forensics Secur 7(3):966–977

    Article  Google Scholar 

  35. 35.

    Alaei A, Pal S, Pal U, Blumenstein M (2017) An efficient signature verification method based on an interval symbolic representation and a fuzzy similarity measure. IEEE Trans Inf Forensics Secur 12(10):2360–2372

    Article  Google Scholar 

  36. 36.

    Guler I, Meghdadi M (2008) A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm. Digit Signal Proc 18(6):940–950

    Article  Google Scholar 

  37. 37.

    Alonso-Fernandez F, Fairhurst MC, Fierrez J, Ortega-Garcia J (2007) Automatic measures for predicting performance in off-line signature. Proc IEEE Intl Conf Image Process 1:369–372

    Google Scholar 

  38. 38.

    Guerbai Y, Chibani Y, Hadjadji B (2015) The effective use of the one-class SVM classifier for handwritten signature verification based on writer-independent parameters. Pattern Recogn 48(1):103–113

    Article  Google Scholar 

  39. 39.

    Vargas JF, Travieso CM, Alonso JB, Ferrer MA (2010) Off-line signature verification based on gray level information using wavelet transform and texture features. In: Proceedings of the ICDAR, pp 587–92

  40. 40.

    Dey S, Dutta A, Toledo JI, Ghosh SK, Lladós J, Pal U (2017) SigNet: Convolutional Siamese network for writer independent offline signature verification. arXiv preprint arXiv:1707.02131

  41. 41.

    Simon C, Levrat E, Bremont J, Sabourin R (1997) A fuzzy perception for off-line handwritten signature verification. In: BSDIA’97, pp 261–272

    Google Scholar 

  42. 42.

    Madasu VK, Yusof MHM, Hanmandlu M, Kubik K (2003) Off-line signature verification and forgery detection system based on fuzzy modeling. In: Gedeon TD, Fung LCC (eds) Advances in artificial intelligence, vol 2903. Springer, Berlin, pp 1003–1013

    Google Scholar 

  43. 43.

    Hanmandlu M, Yusof MHM, Madasu VK (2005) Off-line signature verification and forgery detection using fuzzy modeling. Pattern Recogn 38(3):341–356

    Article  Google Scholar 

  44. 44.

    Woo YW, Han S, Jang KS (2006) Off-line signature verification based on directional gradient spectrum and a fuzzy classifier. In: Proceedings of the first pacific rim symposium (PSIVT 2006), pp 1018–1029

    Google Scholar 

  45. 45.

    Ferrer M, Alonso J, Travieso C (2005) Offline geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Trans Pattern Anal Mach Intell 27(6):993–997

    Article  Google Scholar 

  46. 46.

    Prakash HN, Guru DS (2010) Offline signature verification: an approach based on score level fusion. Int J Comput Appl 1:52–58

    Google Scholar 

  47. 47.

    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66

    Article  Google Scholar 

  48. 48.

    Ojansivu V, Heikkilä J (2008) Blur insensitive texture classification using local phase quantization. Springer LNCS 5099:236–243

    Google Scholar 

  49. 49.

    Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693

    Article  Google Scholar 

  50. 50.

    Schölkopf B, Platt J, Shawe-Taylor J, Smola A, Williamson R (2001) Estimating the support of a high dimensional distribution. Neural Comput 13(7):1443–1472

    Article  Google Scholar 

  51. 51.

    Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22:418–435

    Article  Google Scholar 

  52. 52.

    Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley Inter-science, London

    Book  Google Scholar 

  53. 53.

    Gader PD, Mohamed MA, Keller JM (1996) Fusion of handwritten word classifiers. Pattern Recogn Lett 17:577–584

    Article  Google Scholar 

  54. 54.

    Ortega-Garcia J, Fierrez-Aguilar J, Simon D, Gonzalez J (2003) MCYT baseline corpus: a bimodal biometric database. IEE Proc Vis Image Signal Process 150(60):395–401

    Article  Google Scholar 

  55. 55.

    Vargas F, Ferrer MA, Travieso CM, Alonso JB (2007) Off-line handwritten signature GPDS-960 corpus. In: Proceedings of the 9th ICDAR, pp 764–768

  56. 56.

    Pal S, Alaei A, Pal U, Blumenstein M (2016) Performance of an off-line signature verification method based on texture features on a large indic-script signature dataset. In: Proceedings of the DAS, pp 272–277

  57. 57.

    Kumar MM, Puhan NB (2014) Off-line signature verification: upper and lower envelope shape analysis using chord moments. IET Biom 3:347–354

    Article  Google Scholar 

  58. 58.

    Chen S, Srihari S (2006) A new off-line signature verification method based on Graph. In: Proceedings of the 18th international conference on pattern recognition, pp 869–872

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Partha Pratim Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhunia, A.K., Alaei, A. & Roy, P.P. Signature verification approach using fusion of hybrid texture features. Neural Comput & Applic 31, 8737–8748 (2019). https://doi.org/10.1007/s00521-019-04220-x

Download citation

Keywords

  • Offline signature verification
  • Texture features
  • Wavelet transform
  • Local phase quantization
  • Score-level fusion